Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вариационная постановка плоской задачи

ВАРИАЦИОННАЯ ПОСТАНОВКА ПЛОСКОЙ ЗАДАЧИ  [c.325]

Вариационную постановку плоской задачи при заданных на контуре L поверхностных силах ti, рассмотрим, исходя из принципа минимума дополнительной работы (см. гл. V, 6).  [c.325]

Таким образом, вариационная постановка плоской задачи сводится к определению подчиненной граничным условиям (9.21) функции напряжений Ф (xi, Хг), минимизирующей функционал (9.439),  [c.326]


Вариационная постановка плоской задачи, основанная на принципе минимума потенциальной энергии, обстоятельно рассмотрена в книге [35]. Отметим, что при определении температурных напряже ний во многих случаях также эф ктивно применение вариационных методов (И, 30].  [c.328]

Изложены следующие разделы курса теория напряженно-деформиро-ванного состояния, физические соотношения и постановки задач теории упругости, вариационные принципы, плоская задача, теория пластин, теории пластичности, линейная вязкоупругость. Включены примеры решения задач и тестовые задания.  [c.1]

В разделе II (главы 6—8) рассматриваются общие вопросы классической теории упругости обобщенный закон Гука, постановка и методы решения задач теории упругости, вариационные принципы и методы, плоская задача теории упругости в декартовых и полярных координатах, кручение стержней.  [c.4]

В учебнике излагаются теория напряжений в деформаций, основные соотношения, принципы и теоремы теории упругости, постановка и методы решения задач теории упругости, плоская задача теории упругости в декартовых и полярных координатах, теория изгиба и устойчивости тонких пластин (прямоугольных и круглых в плане), приближенные методы решения задач теории упругости (вариационные методы, метод сеток, метод конечных элементов), основы теории тонких упругих (безмоментных и пологих) оболочек, основы теории пластичности. Большое внимание уделено приложениям, ра-вобрано большое количество задач. В конце каждой главы приведены вопросы для самопроверки в задачи для тренировки, к части из которых даны решения.  [c.2]

Величины Аз и А4 являются постоянными, а Аг(у) и Х у) — переменными множителями Лагранжа. При постановке частных вариационных задач некоторые из условий задачи 1 могут не использоваться. Например, в задаче о плоском профиле может не задаваться подъемная сила (. В этом случае в сумме (2.20) достаточно положить равным нулю соответствующий множитель Лагранжа.  [c.71]

Рассмотрена вариационная задача об одномерном безударном сжатии идеального (невязкого и нетеплопроводного) газа плоским (г/ = 0), цилиндрическим (г/ = 1) и сферическим (г/ = 2) поршнем. Как ив [1, 2], минимизируется работа поршня при заданном его перемещении за фиксированное время tf. При постановке задачи важную роль играет время то прохождения звуковой волной отрезка Ха — где X — декартова, цилиндрическая или сферическая координата, а Жа и ж о отвечают поршню (при = 0) и неподвижной стенке (для г/ = 1 и 2, возможно, — оси или центру симметрии). Если не оговорено особо, Ха° < Жа, и поршень в плоскости х1 движется влево. По постановке задачи в газе при t < tf не допускаются ударные волны. Поэтому, если < го, то слева от начальной (7 -характеристики газ невозмущен и может быть исключен из рассмотрения, т.е. случай tf < то сводится к случаю tf = то с меньшим то и большим Ха°- В отличие от [1, 2], где газ при = 0 предполагался покоящимся и однородным, далее при нулевой начальной ж-компоненте скорости допускается переменность начальной энтропии, а для V = 1 — и радиально уравновешенной начальной закрутки.  [c.311]


Это известная плоская постановка задачи о целиках в однородных пластах [см. также вьппе соотношения (2.9), (2Л0)], эффективно решаемая методами теории струй. Поскольку в соответствующей вариационной формулировке сужен класс допустимых функций h(x,y), то получающиеся решения дают оценки снизу для функционала J на истинном решении  [c.71]

Указанное несоответствие с физикой сверхзвукового течения требует новой постановки вариационной задачи с дополнительным требованием, чтобы давление на контуре тела было везде неотрицательное. Ниже дается обш ий метод решения этой задачи для плоского и осесимметричного течения газа.  [c.373]

Один подход был предложен А. А. Никольским (1950) для линейных задач. Основная его идея распространяется на двухмерные задачи в точной постановке и заключается в следующем. Из концевых точек образующей тела проводятся до точки пересечения отрезки характеристик уравнений газовой динамики. Совокупность этих отрезков называется контрольным контуром. Волновое сопротивление тела, условие непротекания газа через его поверхность, длины проекций образующей тела на оси координат и некоторые другие величины выражаются в виде интегралов через функции на контрольном контуре. В результате плоская и осесимметричная задача оптимизации формы тела сводится к одномерной вариационной задаче для функций на контрольном контуре.  [c.242]

Решение вариационных задач сверхзвукового обтекания тел в нелинейной постановке развивалось по двум направлениям. Первое направление основано на использовании приближенных формул, выражающих давление на теле в простом виде через геометрические характеристики тела (подобно формуле Аккерета в линейной теории плоских течений). К таким формулам относятся формулы Ньютона и Буземана, использование которых оправдано в некоторых случаях течений с большой сверхзвуковой скоростью. Обсуждение соответствующих результатов читатель найдет в п. 8.7, посвященном большим сверхзвуковым скоростям. Второе направление, ограниченное пока рассмотрением лишь некоторых  [c.179]

В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]

В первой части книги (главы 17), предназначенной в основном для студентов, рассмотрены следующие разделы курса теория напряженно-деформированного состояния, физические соот-ногления и постановки задач теории упругости, вариационные принципы, контактная задача теории упругости, плоская задача, теория пластин, теории пластичности, линейная вязкоупругость. При этом используется аппарат тензорного исчисления в прямоугольной декартовой системе коордипат. Теоретический материал сопровождается типовыми примерами регпения учебных задач. Удобные для контроля и самоконтроля знаний студентов тестовые задания приведены в приложении.  [c.7]

Здесь мы рассмотрим несколько задач на плоскости, или, вернее, в области Q на плоскости, ограниченной гладкой кривой Г. Нашей целью в первую очередь будет сопоставление с дифференциальным видом этих задач, содержащих оператор Лапласа А и бигармонический оператор А , эквивалентной вариационной формулировки. Это означает, что в вариационной постановке мы должны подобрать допустимые пространства, в которых ищется решение. Естественно, что эти пространства зависят от краевых условий, и, как и в случае одномерной краевой задачи, условия Дирихле (главные условия) будут отличаться от условий Неймана (естественных условий). Примеры привести очень легко, но они представляют собой простейшие модели плоского напряженного состояния и изгиба пластины, так что полезнее еще раз проиллюстрировать основные идеи  [c.81]



Смотреть страницы где упоминается термин Вариационная постановка плоской задачи : [c.198]    [c.100]    [c.509]   
Смотреть главы в:

Теория упругости  -> Вариационная постановка плоской задачи



ПОИСК



656 —• Постановка задачи

Задача вариационная (задача

К постановке зг ачи

Плоская задача

Постановка вариационных задач

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте