Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Формулировки смешанного типа

НАПРЯЖЕННОГО СОСТОЯНИЯ И ВАРИАЦИОННЫЕ ФОРМУЛИРОВКИ СМЕШАННОГО ТИПА  [c.17]

Формулировки смешанного типа 212 Функции двойственные 191  [c.424]

В соответствии с формулировкой задачи, (10) является уравнением смешанного типа, так как W ,y) > О, W —oo,y) < 0. Для сопла конечной длины W B,y) <0, О у 1.  [c.112]

В работах [134, 135] был разработан метод численного решения прямой задачи сопла Лаваля, использующий схему разностной аппроксимации, предложенную в [153]. Рассматривается уравнение второго порядка смешанного типа для коэффициента скорости в ортогональной системе координат, связанной с линиями тока, что позволяет при формулировке задачи в полуполосе изучать сопла с крутыми стенками. Система разностных уравнений с изменяющимся в зависимости от типа уравнения шаблоном решается методом итераций с использованием прогонки на каждой итерации. В качестве примеров рассчитаны течения в соплах спрофилированных методом годографа. (Метод предназначен для расчета течений в хороших соплах (без скачков уплотнения), поэтому его неконсервативность не важна.)  [c.124]


Наша цель —изучить метод, основанный на другой вариационной формулировке бигармонической задачи (подразумевается, что приведенная выше вариационная формулировка — стандартная). Сами такие методы подразделяются на несколько категорий (см. обсуждение в разделе. Дополнительная библиография и комментарии в конце этой главы), и цель этой главы состоит в изучении одного из них —так называемого метола смешанного типа. В своей основе он соответствует вариационной формулировке, где функция — первый аргумент минимума и, ф) нового функционала. Таким образом, мы непосредственно получим аппроксимации не только решения и, но также и второго аргумента ф. Так как в свою очередь в данном случае этой функцией ф будет —Аи, то этот подход, в частности, соответствует изучению двумерных установившихся течений, где —Аи представляет завихренность.  [c.370]

Отметим некоторые преимущества смешанной вариационной формулировки задачи (1.82), (1.83) по сравнению с классическим методом перемещений. При решении задач прикладной теории упругости и строительной механики методом конечных элементов сходимость решений в ряде случаев определяется реакцией элемента на смещения как жесткого целого и геометрической изотропией (когда не отдается предпочтение какому-либо направлению) аппроксимации деформаций. Плохая сходимость решений, в первую очередь, характерна для криволинейных элементов оболочечного типа, поскольку аппроксимация перемещений полиномами низкой степени является грубой для описания смещений как жесткого целого. Такие элементы могут накапливать ложную деформацию и вносить существенные погрешности в решение задач. При учете деформаций поперечных сдвигов и обжатия в многослойных оболочечных элементах учет смещения как жесткого целого становится особенно важным, поскольку при уменьшении параметра тонкостенности (A/i ) указанные деформации стремятся к нулю, а коэффициенты их вклада в общую потенциальную энергию стремятся к бесконечности. Таким образом, погрешности в вычислении деформаций усиливаются и могут дать значительную ложную энергию, превосходящую энергию изгиба или энергию мембранных деформаций. Независимая аппроксимация полей деформаций в пределах конечного элемента при использовании смешанного метода позволяет обеспечить минимальную энергию ложных деформаций и требуемый ранг матрицы жесткости.  [c.23]

ДЛЯ формулировки конкретной задачи. Они говорят о том, какие усилия или смещения приложены к границам тела. В зависимости от типа условий, заданных на границах, можно выделить несколько разных видов краевых задач. Краевая задача в напряжениях — это задача, в которой во всех точках границы заданы компоненты усилия ti, краевая задача в смещениях — это задача, в которой во всех точках границы заданы компоненты смещения щ. Задача, представляющая собой комбинацию этих двух основных краевых задач , называется смешанной краевой задачей.  [c.30]


Оба указанных приема позволяют получить (после исключения поля давления) бесконечную систему уравнений типа снстемы Фридмана — Келлера для всевозможных моментов и смешанных моментов полей и (X, ), (X. t) и 2 (X, /) (или я (X, t) и (X, t)), содержащую в качестве неизвестных интересующие нас статистические характеристики относительного движения пары жидких частиц. Иначе говоря, этн приемы дают аналитическую формулировку проблемы относительной диффузии, родственную формулировке проблемы турбулентности. После этого теоретическое определение характеристик относительной диффузии упирается в обычные трудности проблемы замыкания уравнений для моментов, о которых уже много говорилось в этой книге.  [c.503]

В этой главе показано, что существует целый ряд независимых подходов к построению уравнений податливости, жесткости, а также смешанных уравнений для элемента. Эти альтернативные подходы вытекают в основном из принципов стационарности потенциальной и дополнительной энергии и смешанных энергетических принципов. Внутри каждого подхода также существуют различные формулировки, обусловленные предположениями о характере полей в совокупности со смягчением (релаксацией) определенных условий для основных типов энергетических принципов.  [c.198]

В главе 6 на конкретных примерах показаны возможные пути обобщения результатов для нелинейных уравнений и систем. Два первых параграфа посвящены изложению общих результатов по сходимости метода конечных элементов для нелинейных задач с операторами монотонного типа и решению двух типичных нелинейных задач, распространенных в приложениях, с помощью многосеточных итерационных алгоритмов. Решение плоской задачи упругости демонстрирует возможность обобщения построенных алгоритмов и их обоснования для эллиптических систем зфавнений. Среди многих известных методов дискретизации бигармонического уравнения рассмотрена смешанная формулировка метода конечных элементов, приводящая к системе двух уравнений Пуассона с зацепленными краевыми условиями. В итоге обобщенная формулировка содержит только первые производные и отпадает необходимость использования сложных базисных функций из класса С (И ). Смешанная формулировка использована также для дискретизации стационарных задач Стокса и Навье — Стокса. Здесь применялись комбинации простых конечных элементов — линейные для скоростей и постоянные для давления.  [c.12]

Следует отметить, что (7.19) отвечает формулировке смешанного типа. (Ср. с (2.3).) Это можно понять, вспоминая, что согласование размерностей в расширенном функционале приводит к тому, что множители Лагранжа имеют размерность силовых параметров. Ввиду положительной полуопределенности соотношений (7.19) не удается доказать в общем случае, что найденное таким образом решение, основанное на принципе минимума потенциальной энергии, дает иижние границы для рассматриваемых характеристик.  [c.212]

Особое внимание уделено смешанным вариационным формулировкам двух типов. Первая соответствует смешанному вариационному принципу Рейссиера, вторая — задачам на экстремум полной потенциальной энергии системы при наличии дополнительных условий в виде дифференциальных уравнений связи между перемещениями и их производными. Для одномерных задач предлагается вариационно-матричный способ вывода канонических систем разрешающих дифференциальных уравнений. Для двумерных задач рассматриваются вопросы реализации решений с использованием проекционных методов типа Рэлея—Ритца и конечных элементов с учетом специфики смешанной вариационной формулировки.  [c.5]

Первые вариационные формулировки нелинейной теории оболочек были построены по интуиции. Среди них назовем вариационные уравнения смешанного типа обобщенной теории Кармана (Н. А. Алумяэ 1950 М. А. Колтунов, 1952 ], а также уравнения обп1.ей нелинейной теории (К. 3. Галимов, 1956).  [c.235]


Современное состояние теории линейных уравнений смешанного типа и вырождающихся эллиптических и гиперболических уравнений представлено в монографиях [92, 93, 20]. Движение идеального газа описывается квазилинейными уравнениями смешанного типа. Использование теории линейных уравнений для изучения свойств трансзвуковых течений оправдано тем, что каждое решение нелинейного уравнения принадлежит множеству решений некоторого линейного уравнениями, значит, свойства трансзвуковых течений принадлежат совокупности свойств решений линейных уравнений. В связи с этим ряд теорем теории линейных уравнений может быть выражен в терминах аэрогазодинамики. Однако при такой интерпретации могут возникать трудности при формулировке условий реализации свойств, классифицируемых по типам линейных уравнений. Линейное уравнение Чаплыгина в плоскости годографа скорости и его упрощенный вариант — уравнение Трикоми — стали первыми и наиболее полно разработанными объектами теории. Следует все же отметить, что большинство полученных математических результатов имеют пока лишь ограниченное или косвенное приложение в трансзвуковой аэродинамике. Это связано с тем, что области определения считаются заданными и, следовательно, рассматриваемые задачи могут иметь отношение лишь к проблеме профилирования контура тела. В то же время одна из главных задач аэродинамики — прямая задача внешнего или внутреннего обтекания тела заданной формы, формулируемая в плоскости годографа как задача со свободной границей, остается мало обоснованной.  [c.49]

Вариационные принципы минимума дополнительной работы и смешанные (Рейсснера и Васидзу) также без труда переносятся с классической теории на моментную. Например, формулировка принципа типа Рейсснера такова  [c.102]

Имеется несколько разновидностей метода конечных элементов решение в перемещениях, в силах, смешанная формулировка, гибридный подход. Наибольшее распространение у нас в стране и за рубежом получил метод перемещений, поскольку он обладает целым рядом достоинств, среди которых можно отметить простоту, удобство реализации на ЭВМ, естественную приспособленность к анализу динамических проблем, Применительно к расчету пластин и оболочек, где создание эффективных конечных элементов в перемещениях дли Т У1Ьное время наталкивалось на серьезные трудности, были разработаны и успешно использовались конечные элементы так называемого гибридного типа. Однако в конце 70-х годов эти трудности удалось в значительной степени преодолеть, что позволяет избежать применения сложных гибридных элементов.  [c.10]

Получить аналитические решения для двухслойных покрытий при всем многообразии граничных условий и способов загружения не представляется возможным. Это обстоятельство обусловливает необходимость применения численных методов. Однако получение численных решений даже большого количества задач с конкретными граничными условиями и коэффициентами дифференциальных уравнений не всегда дает возможность установить степень влияния изменений совокупности исходных параметров на напряженно-деформированное состояние рассматриваемых конструкций. Поэтому в теоретических исследованиях зачастую применяется смешанный метод, заключаюш,ийся в поиске аналитических решений задач о нанряженно-деформированном состоянии конструкций для простых областей или упро-ш,енных схем, типа балочных, которые уточняются для более сложных условий численными методами. Такой подход требует строгой математической формулировки для упрош енных моделей. Построить математическую модель, учитываюш ую все особенности работы покрытия, в настояш,ий момент не представляется возможным, так как крайне затруднительно достаточно точно сформулировать модельные предпосылки для описания всего спектра природных и физических процессов, происходяш их в покрытиях при воздействии эксплуатационных нагрузок в различные периоды года. В связи с изложенным выше весь комплекс задач, связанных с определением параметров напряженно-деформированного состояния аэродромного покрытия, условно объединим в ряд независимых групп.  [c.187]

При постановке новых проблем исходным пунктом в большинстве случаев является начало возможных перемеш ений, приводяш ее к вариационной формуле Лагранжа для данного объекта. Если задачу целесообразно формулировать в перемещениях, то на этом функции вариационного исчисления при решении рассматриваемой задачи и кончаются. В нелинейной же теории оболочек самым распространенным вариантом являются уравнения типа Кармана, сформулированные в смешанной форме (через прогиб и функцию напряжения). Ясно, что различным формулировкам соответствуют разные вариационные формулы. Получение таких формул нередко представляет достаточный интерес (хотя бы для нестрогого обоснования процедуры метода Бубнова — Галеркина). Например, большое внимание было уделено обобщению вариационного принципа Кастильяно на нелинейную теорию равновесия пластинок и оболочек (Н. А. Алумяэ, 1950 К. 3. Галимов, 1951, 1958).  [c.235]

Уравнение (7) имеет смешанный эллиптико-гиперболический тип. Математическая формулировка прямой задачи сопла Лаваля бесконечной длины для уравнения (7) такова в полуполосе G = —оо (р С,  [c.126]

Эйлерова сетка конечных элементов допускает произватьные искривления, но в вычислительном отношении очень неэффективна из-за наличия конвективных членов, содержаш,ихся в несимметричной матрице А уравнений (8.31). Наоборот, если используется схема Лагранжа при изучении движения жидкости, то сетку элементов легко можно сделать очень искривленной. Представляется удобным (см. пример 8.2) для такого типа задач применять смешанную эйлерово-лагранжеву схему. При этом будет выполняться простое интегрирование, присуш,ее формулировке Лагранжа, но сохранится вычислительная сетка, используемая в схеме Эйлера.  [c.233]


На рис. 12.14 приведены численные результаты для различных типов смешанных формулировок. Пн-формулировка, основанная на рассмотрении постоянных моментов и линейно изменяющихся перемещений, как уже было отмечено, приводит к результатам, идентичным тем, которые уже были представлены на рис. 12.9 для жесткостной формулировки с шестнчленным (квадратичным) полиномом. Смешанная формулировка, основанная на представлении более высокого порядка [12.45] (линейно изменяющиеся моменты, квадратичные перемещения), существенно повышает точность решения Заметим, однако, что в этом случае для каждого элемента требуется вдвое больше узлов (шесть, а не три). Этот факт не нашел отражения на горизонтальной оси рис. 12.14. Наконец, как видно из графика, гибридная формулировка в напряжениях [12.48] с полями, сравнимыми с используемыми в простейшей Пн-формулировке, приводит к решениям, лежащим по другую сторону от точного решения и намного более точным для заданного размера разбиения. Тем не менее приходится вновь предупредить, что при определении относительных преимуществ той или иной формулировки необходимо учитывать много других факторов.  [c.376]


Смотреть страницы где упоминается термин Формулировки смешанного типа : [c.171]    [c.189]    [c.400]    [c.138]   
Метод конечных элементов Основы (1984) -- [ c.212 ]



ПОИСК



I смешанные

Смешанная формулировка



© 2025 Mash-xxl.info Реклама на сайте