Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Испытания физико-химические

В разделе, посвященном машиностроительным материалам, значительное место отведено основным методам испытаний — физико-химическим, механическим и технологическим приведены сведения по основным физико-химическим и механическим свойствам материалов, а также по сортаменту важнейших видов металлических и неметаллических материалов, наиболее часто применяемых в машиностроении и инструментальном деле.  [c.1087]

Анализ рентгенограмм, снятых после испытания образцов, показывает, что в процессе трения с различной скоростью скольжения в поверхностном слое идут одинаковые физико-химические процессы  [c.98]


Испытание стойкости материалов,,т. е. их сопротивляемости разрушению, износу, коррозии, кавитации и другим процессам, является исходным для суждения о надежности тех изделий, где эти процессы играют основную роль в потере работоспособности, В результате этих испытаний должны быть получены данные о скорости протекания процессов при действии различных факторов или о критических значениях параметров, при которых возникают нежелательные формы процесса разрушения. Основной целью испытаний стойкости материала является установление зависимостей, связы-ваюш,их характеристики материала с воздействиями, приводяш.ими к его разрушению. Наиболее ценной является аналитическая закономерность, связывающая процесс разрушения материала с физическими константами (см. гл. 2, п. 1). Однако такую зависимость, которая является достаточно универсальной, часто трудно получить из-за сложности физико-химических процессов (см, гл. 2) и она, как правило, относится к категории физических законов. Практические цели испытаний обычно более узки и сводятся к получению данных о стойкости материала в заданном диапазоне условий его работы. Эти данные могут быть выражены в виде аналитических зависимостей, таблиц, графиков или в иной форме. -  [c.485]

Проанализируем возможные причины роста прочности сцепления с увеличением температуры испытаний. Интенсификация процессов физико-химического взаимодействия материалов покрытия и основы при нагреве образцов вряд ли возможна, поскольку температура испытаний значительно ниже температур в контакте частица—подложка, необходимых для образования прочного сцепления [3]. Трудно предположить и возможность интенсификации объемного развития взаимодействия в переходной зоне между покрытием и подложкой при температурах порядка 300° С и за краткий период времени нагрева образцов. (Время нагрева и выдержки при заданной температуре составляло в сумме 8 мин).  [c.103]

В пределах намеченной серии испытаний технология изготовления образцов из однотипных металлов должна быть одинаковой. Вырезка, маркировка и изготовление образцов не должны оказывать существенного влияния на усталостные свойства исходного материала. Нагрев образца при его изготовлении должен быть минимальным и не вызывать структурных изменений и физико-химических превращений в металле, удаление припусков на обработку, параметры режима, н последовательность обработки должны сводить к минимуму наклеп и исключать местный перегрев образцов при шлифовке (прижоги и шлифовочные трещины снижают a i в 2—3 раза), а также трещины и другие дефекты. Снятие последней стружки с рабочей части и головок образцов производят с одной установки образца заусенцы на боковых гранях образцов и у надрезов должны быть удалены.  [c.26]


При исследовании механических свойств поверхностей раздела возникают проблемы, близкие к тем, с которыми сталкиваются при физико-химическом исследовании. Можно использовать изолированные поверхности раздела, но и в этом случае не воспроизводятся распределения остаточных напряжений в композитах, а сложное напряженное состояние при их деформации не идентично состоянию типичного композитного материала. С другой стороны, испытания по вытягиванию волокна также недостаточно воспроизводят условия в композите по причинам, рассмотренным более подробно в гл. 2.  [c.40]

Один из распространенных методов физико-механических испытаний — метод измерения твердости, позволяющий осуществить быстрый и точный контроль изделий и материалов, а также проводить разнообразные физико-химические исследования. Этот метод получил применение в связи с возможностью косвенной оценки других механических характеристик вещества (прочности, упругости, пластичности и др.) 1—4].  [c.236]

С развитием атомной энергетики одним из наиболее важных является вопрос о том, какое влияние оказывает облучение на свойства различных металлов и сплавов. Облучение металлов ядерными частицами создает дефекты в кристаллической решетке, что ведет к значительному изменению физических и механических свойств материалов, однако природа и механизм образования этих дефектов пока еще однозначно не установлены. Очень плодотворным здесь оказалось применение метода микротвердости. При этом условия проведения испытаний не позволяют исследователю непосредственно наблюдать микроструктуру образца. В настоящее время ведутся обширные работы [20—22, 31—37] по исследованию микроструктуры и физико-химических свойств материалов под действием нейтронного облучения.  [c.238]

Изложены основные способы оценки штампуемости листового металла на производстве, включая механические испытания и технологические пробы, а также физико-химические исследования. Приведены факторы, влияющие на брак и условия производства. Рассмотрена современная методика оценки штампуемости при операциях глубокой вытяжки и формовки сложных поверхностей.  [c.134]

Проведенные нами опыты показывают, что усредненные значения метеорологических параметров не всегда являются доминирующими при оценке агрессивности того или другого климатического района. Во влажных субтропиках влияние метеорологических элементов наиболее значительно в первые 3—4 месяца (в зависимости от конкретных условий среды и природы металла). В дальнейшем скорость коррозии зависит главным образом от физико-химических свойств продуктов коррозии. Поэтому естественно, что в начальный период испытания образцов требуется четкое и систематическое наблюдение за динамикой метеорологических параметров.  [c.42]

Процесс горячей деформации материалов описывается с помощью кривых текучести (диаграмм деформаций) в координатах а—г, (Т—Г), форма и значения параметров которых зависят от типа кристаллической решетки, физико-химических свойств и состояния металла, температуры, скорости и степени деформации, истории и пред- истории нагружения, методики испытаний, масштабного фактора и т. д.  [c.9]

Структура, взаимодействие компонентов и механические свойства композиционных материалов в значительной мере зависят от методов и режимов их изготовления [54]. Так, например, ири изготовлении композиции по режимам, характеризующимся отклонением параметров процесса от оптимальных в сторону снижения температуры, давления и сокращения времени выдержки, реализуется лишь начальная стадия физико-химического взаимодействия компонентов механизм разрушения полученного композиционного материала определяется в этом случае прочностью связи матрицы с волокном. Материал ири нагружении разрушается за счет накопления трещин на границе матрица—волокно и последующего раздельного разрыва частично связанного пучка армирующих волокон и матрицы. Разрыв какого-либо волокна приводит обычно к отслоению его от матрицы, вследствие чего в процессе дальнейших испытаний данное волокно не несет нагрузки. При таком механизме матрица разрушается с образованием воронок вокруг индивидуальных волокон или их комплексов зона разрушения матрицы обычно локализована в плоскости, перпендикулярной к направлению нагрузки волокна выдернуты из матрицы на значительную длину, область разрывов отдельных волокон распределена вдоль оси образца. Такой материал характеризуется высокой ударной вязкостью, сравнительно невысокой прочностью ири растяжении, низкими значениями циклической прочности, прочности при сдвиге, сжатии, изгибе, кручении и т. д.  [c.10]


Результаты электрохимических исследований хорошо коррелируют с данными, полученными при исследовании физико-химических и защитных характеристик покрытий, а также с результатами натурных испытаний.  [c.176]

Рис. 99. Физико-химические параметры среды в местах расположения установок для коррозионных испытаний (УКИ) Рис. 99. <a href="/info/651221">Физико-химические параметры</a> среды в местах расположения установок для коррозионных испытаний (УКИ)
Проверочных методов расчета пластмассовых деталей на текучесть, основанных на использовании физико-химических констант материалов, пока не существует. Учитывая, что испытания на текучесть в большинстве случаев продолжаются очень долго, большое значение приобретают методы ускоренного или сокращенного испытания пластмасс на хладотекучесть.  [c.47]

Изучение физико-химических процессов, способных привести к отказам, создает возможность научно обоснованного выбора наиболее эффективных конструктивно-технологических путей повышения надежности деталей и устройств априорной оценки их надежности, отвечающей действительной природе явлений разработки научно обоснованных методов ускоренных испытаний на надежность, сокращения объема необходимых испытаний прогнозирования надежности каждого экземпляра элемента или устройства на основании исследования его определенных физических свойств.  [c.40]

Испытание клеев. Важнейшими испытаниями физических и физико-химических свойств клеевых композиций являются определение внешнего вида, относительной плотности, вязкости, концентрации, жизнеспособности, усадки и внутренних напряжений. Подробное описание указанных методов приведено в литературе [1 ].  [c.291]

Число работ, выполняемых в этом направлении за год, исчисляется сотнями, что свидетельствует об огромном интересе исследователей к такому подходу оценки трещиностойкости конструкционных материалов. Исследования закономерностей роста трещин в конструкционных материалах с учетом воздействия агрессивных сред, температур и других физико-химических факторов проводят на специальных образцах с предварительно выведенными трещинами, конструкция и методы испытания которых описаны в гл. II.  [c.20]

Для многих деталей машин и инженерных конструкций, которые имеют различные поверхностные трещиноподобные дефекты металлургического, технологического или эксплуатационного происхождения, стадия зарождения усталостной трещины может не лимитировать общую длительность процесса разрушения и в этом случае долговечность изделия будет определяться временем роста микротрещины до критических размеров. Изучение закономерности роста усталостных трещин с учетом влияния различных физико-химических факторов позволяет более глубоко понять механизм усталостного разрушения и вскрыть процессы, не выделяемые при испытании гладких образцов. Применение образцов с заранее выведенной трещиной ужесточает условия испытания и позволяет обнаружить влияние даже очень слабо-активных сред. Количественные данные о влиянии коррозионных сред на скорость роста усталостных трещин могут быть использованы для расчетов изделий с трещинами.  [c.86]

Радиоактивные изотопы многих десятков элементов используются в машиностроении как меченые атомы и как источники излучения при исследовании взаимодействия контактирующих веш,еств, диффузии и растворимости, износостойкости деталей машин и инструментов, при испытании и изменении свойств конструкционных, смазочных, горючих и других материалов, для измерения и контроля различных параметров, установления физико-химических и технологических закономерностей процессов при их автоматизации.  [c.3]

Проведенные исследования показали также, что стали и никелевые сплавы, испытанные в подобных условиях, дают более глубокие трещины. На основании этого можно сделать заключение, что титановые сплавы обладают более высокой термостойкостью, чем стали и никелевые сплавы. Причиной этого, как показал анализ физико-химических свойств, условий испытания и условий взаимодействия титана с окружающей атмосферой, являются особенности образования и развития газонасыщенного слоя, который при определенных условиях упрочняет материал, испытываемый на термостойкость.  [c.72]

Кроме расс.мотренных методов испытаний, применяемых при лабораторных исследованиях, в последние годы разработан ряд новых физико-химических методов, к числу которы.х относится применение меченых атомов, оптические методы измерения толщины тонких пленок на металлах, определение структуры окис-ных тенок на металлах и др. Эти методы отличаются большой чувствительностью и пригодны для решения ряда важных теоретических вопросов.  [c.351]

Определение химической стойкости. Для органических конст-ру - циош1Ых материалов нет общепринятого метода испытания на химическую стойкость. Обычно о ней судят по изменению веса и изменению физико-механических свойств испытуемых материалов во времени. Чаще всего признаком недостаточной химической стойкости материалов органического пропехождепия служит изменение их внешнего в.чда (изменение цвета, появление трещин, ироницаемость, набухание и др.), снижение механической прочности, изменение цвета раствора, появление в нем мути, загрязнений и т. п.  [c.363]


Сравнительные испытания материалов преследуют несколько целей. Во-первых, устанавливаются усредненные в национальных масштабах значения прочности и деформационных характеристик для каждой из марок того или иного материала, включая подварианты этих материалов после различного вида физико-химических, тепловых, радиационных и др. воздействий, в том числе в условиях их различных сочетаний и последовательностей. Эти сведения накапливаются в общегосударственных, отраслевых и внутрифирменных справочниках и нормативных документах. Они нужны в проектных организациях, а также в государственных контрольноревизионных службах.  [c.47]

Рассмотрим напряженное состояние элемента твердого тела (рис. 4.3) на площадке фактического контакта в виде одной из граней этого элемента. Все грани элемента будут находиться под сжимающими напряжениями, поскольку под действием приложенной нормальной нагрузки по оси X элемент должен увеличиваться в направлении осей К и Z, но этому препятствует окружающий материал. На площадке контакта действует сила трения, поэтому элемент находится под действием не только нормальных О,, но и касательных напряжений, например а,. Такое напряженное состояние сгюсобствует пластическому течению материала. Исследования рабочих поверхностей деталей машин в парах трения и опытных образцов после их испытания показывают, что все металлы в условиях трения в пределах активного слоя подвергаются пластическому деформированию. Активным слоем или активным объемом называют слой (объем), который примыкает к контактирующей поверхности элемента (детали) пары трения и в котором могут происходить различные физико-химические изменения, инициированные трением.  [c.84]

Цели и задачи испытания материалов и элементов конструкций приборов и машин, рассмотренные в разделе 7.1.1, достигаются проведением испытаний различного вида. Это лабораторные испытания для исследования физико-химических и триботехнических свойств материалов, стендовые исгтытания для оценки влияния конструктивных особенностей на триботехнические характеристики узла трения, натурные (эксплуатационные) испытания для определения взаимовлияния различных узлов механизмов и условий эксплуатации на надежность и долговечность машиш, в целом.  [c.207]

Несмотря на все большее расширение применения алюминиевых сплавов для морских сооружений, все же остается актуальной проблема изыскания конструкционных материалов, физико-химические свойства которых отвечали бы требованиям, предъявляемым нефтегазопромысловым сооружениям при эксплуатации в открытом море. Наиболее перспективный материал для этой цели — титан. Исследования некоторых титановых сплавов в Черном море на различных глубинах (7, 27, 42, 80 м) показали высокую стойкость исследованных сплавов на всех глубинах, и их скорость коррозии не превышала 0,01 г/(м2. ч), в то время как нержавеющие стали типа 18-9 были подвержены питтингу глубиной 2,5 мм после экспозиции в течение 21 мес. С увеличением глубины погружения образцов коррозионная стойкость повьииалась, что объясняется понижением температуры и более низкой концентрацией кислорода. Титан обладает очень высокой стойкостью не только в обычных морских средах, но также в загрязненных водах, в морской воде, содержащей хлор, аммиак, сероводород, двуокись углерода, в горячей морской воде. Титан выдерживает очень высокие скорости потока морской воды После 30-суточных испытаний при скорости потока 36,Ь м, с были чены следующие результаты  [c.25]

Вопросы теории теплофизических и физико-химических явлений, сопутствующих плазменному напылению, рассмотрены в монографии В. В. Кудинова [8], В книге 19], написанной им совместно с В. М. Ивановым, даны практические рекомендации по защите различных материалов и конструкций плазменными покрытиями, описано оборудование и технология. Особенностям формирования плазменных покрытий из металлов, окислов и тугоплавких соединений на воздухе и в контролируемой атмосфере посвящена монография В. Н. Костикова и Ю. А. Шестерина [10]. В двух последних литературных источниках имеются сведения о методах испытаний и свойствах плазменных покрытий, приведен справочный материал. Интересным представляется подход в монографии Г. Г. Максимовича, В. Ф. Шатинского и В. И. Копылова [11] к разрушению материалов с плазменными покрытиями. Анализируются различные варианты механизмов упрочнения и разупрочнения композиции основной металл — покрытие с точки зрения изменения потенциального энергетического барьера и динамики дислокаций у поверхности раздела. Проводится оригинальная аналогия менаду процессами образования и разрушения покрытий.  [c.12]

Оценка аппретирующих добавок, улучшающих связь между упрочнителем и полимерной матрицей, проводилась непосредственно по результатам физико-химических испытаний композитов. Однако на основе только экспериментальных данных нельзя достаточно полно объяснить природу адгезионной связи. Несомненно, любая научная интерпретация явлений на поверхности раздела должна коррелировать с практически получаемыми ха-рактеристикам(и (кампознтав. Поокольку даже 1К райне малые аппретирующие добавки оказывают сильное влияние на свойства композитов, то, очевидно, изучение механизма связывания оказывается полезным для выяснения природы адгезии органического полимера к поверхности минерального волокна.  [c.15]

В лаборатории кафедры, ,Термодинамика и тепловые двигатели" ТюмИИ проводили работы по изучению влияния ультразвуковых волн на физико-химические свойства масла при его использований в ГТУ. Испытания осуществляли на специальном стенде, имитирующем условия работы ГТУ. Для максимального приближения эксперимента к условиям работы ГТУ на КС масло, циркулирующее в установке с кратностью к = = 100 ч , в течение 72 ч подвергали температурному воздействию последовательно нагревали и охлаждали. Отметим, что в масляной системе ГТУ  [c.99]

Для получения экспериментальных данных о связи между содержанием и физико-химическими свойствами неметаллическпх включений, имеющихся в стали, с одной стороны, механическими характеристиками се при высоких температурах — с другой, была использована установка ИМАШ-5С-65. С целью наблюдения процессов разрушении и влияния на них неметаллических включений при нагреве до предплавпльных температур испытания проводили в среде очищенного аргона. С этой целью была разработана установка для очистки аргона.  [c.134]

Многочисленными экспериментами установлено (см., например, 111], что жидкая среда, особенно коррозионная, не только увеличивает скорость роста усталостной трещины, но также изменяет характер самой диаграммы усталостного разрушения. Так, в наиболее общем случае взаимодействия чистой коррозионной усталости н коррозии под напряжением диаграмма усталостного разрушения в отличие от инертной среды (рис. 1, б, кривая 1) имеет вид, показанный на рис. 1, б кривой 2, который может существенно изменяться в зависимости от параметров нагружения (например, частоты нагружения [12]), структуры материала и физико-химических свойств среды (например, pH среды [131) При этом в отличие от испытаний в вакууме или на воздухе наблюдаются значительные расхождения в результатах исследований, выполненных по различным методикам на одних и тех же материалах и при одинаковых внешних условиях испытания, например, как указано в работе [14], в случае исследования влияния поляризации на кинетику усталостной трещины в алюминиевглх сплавах в 3,5 %-ном растворе Na l.  [c.287]


Общая для всего мира тенденция улучшения рабочих параметров ГТД за счет увеличения степеней сжатия как следствие приводит к появлению большого числа коротких лопаток с собственными частотами колебаний даже по первой форме в области высоких звуковых частот циклов. Увеличение частоты / при данном ресурсе эксплуатации Тэ автоматически приводит к росту циклической наработки N. Поскольку ресурс Тэ также имеет тенденцию к росту, увеличивается относительное число усталостных повреждений среди возможных нарушений работоспособности деталей ГТД. Стала актуальной проблема оптимизации технологии коротких лопаток и связанных с ними элементов дисков по характеристикам сопротивления усталости на высоких звуковых частотах и эксплуатационных температурах, которые, как и частота нагружения, становятся все более высокими. Из-за жестких требований к весу деталей и сложности их конструкции в каждой из них имеет место около десятка примерно равноопасных зон, включающих различные по форме поверхности и концентраторы напряжений гладкие участки клиновидной формы, елочные пазы, тонкие скругленные кромки, га.лтели переходные поверхности), ребра охлаждения, малые отверстия, резьба и др. Даже при одинаковых методах изготовления, например при отливке лопаток, поля механических свойств, остаточных напряжений, структуры и других параметров физико-химического состояния поверхностного слоя в них получаются различными. К этому следует добавить, что из-за различий в форме обрабатывать их приходится разными методами. Комплексная оптимизация технологии изготовления таких деталей по характеристикам сопротивления усталости сразу всех равноопасных зон без использования ЭВМ невозможна. Поэтому была разработана система методик, рабочих алгоритмов и программ [1], которые за счет применения ЭВМ позволяют на несколько порядков сократить число технологических испытаний на усталость, необходимых для отыскания области оптимума методов изготовления деталей, а главное строить математические модели зависимости показателей прочности и долговечности типовых опасных зон деталей от обобщенных технологических факторов для определенных классов операций с общим механизмом процессов в поверхностном слое. Накапливая в магнитной памяти ЭВМ эти модели, можно применять их для прогнозирования наивыгоднейших режимов обработки новых деталей, которые в авиадвигателестроении часто меняются без трудоемких испытаний на усталость. Построение  [c.392]

Металлург и коррозионист. Ученый, руководитель крупного исследовательского коллектива и инженер-практик, успешно реализующий результаты исследования. Диагност с опытом разрешения коррозионнькх проблем в самых разных сффах хозяйства, средах и условиях. Консультант шведских фирм и государственных учрежд шй, занимающихся проблемой уменьшения потерь от коррозии в стране. Инициатор широких международных связей своего института, включая программы иитереснейших совместных исследований с советским Физико-химическим институтом им. Карпова. Деятельный участник многих международных организаций, в том числе в сфере стандартизации терминов, методов коррозионных испытаний средств противокоррозионной защиты... Отблески этого огромного личного опыта то и дело мелькают на страницах книги  [c.7]

Таблица 18.20. Влияние режимов испытаний в нитрине на физико-химические Таблица 18.20. Влияние режимов испытаний в нитрине на физико-химические
Полученные экспериментальные результаты позволяют привести некоторые соображения относительно условий возникновения и суш,ествования режима ИП при малых скоростях скольжения и высоких удельных нагрузках. Способность среды препятствовать схватыванию металлических поверхностей определяется ее физико-химической активностью по отношению к труш,имся металлам и проникающей способностью в места фактического контакта. В условиях высоких удельных давлений, при которых производили испытания, степень пластической деформации образцов достигала значительной величины и соответственно возрастала площадь фактического контактирования. Это препятствовало проникновению смазывающей среды к участкам контактирования, и поэтому непосредственное взаимодействие металлических поверхностей было определяющим. Такому поведению фрикционного контакта способствовала и специфичность узла трения.  [c.41]

Лако-красочные материалы и покрытия проверяются по ГОСТ 4765-49, в котором установлены методы проведения испытаний и последующих расчетов. В основном в лабораторном порядке определяют следующие элементы основные физико-химические свойства минеральных пигментов (содержание влаги в навеске и потери при прокаливании навески пигмента, содержание водорастворимых солей, реакция водной вытяжки, отсутствие органических красителей) остаток на сите цвет по иодометрической щкале вязкость содержание растворителя или количество летучих веществ растворителей, входящих в состав данного продукта содержание связующего и твердых веществ содержание пенкообразующих веществ степень растертости разлив укрывистость получение пленки условная твердость и вязкость прочность и гибкость пленки стойкость и водостойкость истираемость покрытия влаго-поглощаемость и водопроницаемость покрытий.  [c.348]

Особенности приспособлений для испытания в рабочих средах. Конструкция ирисиособлений для испытания в рабочих средах в первую очередь определяется состоянием рабочей среды (жидкость, газ), ее физико-химическими свойствами, характером нагружения, а также заданной степенью имитации условий работы деталей машин и элементов конструкций.  [c.159]

Особо следует рассмотреть вопрос проверки влияния режимов дезактивации на работоспособность выбранных материалов пары трения. Процесс дезактивации заключается в воздействии на поверхность оборудования растворов определенных химических веществ, растворяющих не только насосные загрязнения, но и снимающих некоторый поверхностный слой металлических деталей, имеющий наведенную активность [7]. Если дезактивирующий раствор будет контактировать с материалами подшипников, то не исключена возможность ухудшения работоспособности подшипников из-за изменения физико-химических свойств и структурного состояния поверхностного слоя. Поэтому стойкость материалов пары трения к действию дезактивирующих растворов должна проверяться в достаточно длительных ресурсных испытаниях после проведения дезактивации ГЦН по принятой технологии. Эти испытания могут быть выполнены на стенде, сооруженном для обкатки опытного образца насоса при спецификационных режимах и дооборудованном системами приготовления, введения и слива дезактивирующих растворов.  [c.227]


Смотреть страницы где упоминается термин Испытания физико-химические : [c.5]    [c.108]    [c.48]    [c.364]    [c.340]    [c.94]    [c.196]    [c.93]    [c.137]    [c.43]    [c.264]    [c.34]   
Технология холодной штамповки (1989) -- [ c.19 ]



ПОИСК



Испытания на ползучесть и релаксацию, как методы физико-химического анализа

Различные физико-химические испытания

Различные физико-химические испытания электроизоляционных материалов 7- 1. Определение геометрических размеров

Химическая физика



© 2025 Mash-xxl.info Реклама на сайте