Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отпуск — Применение при сварке

Отпуск — Применение при сварке 78, 80, 127  [c.373]

Способы предотвращения холодных трещин в сварных соединениях направлены на уменьшение или устранение отрицательного действия основных факторов, обусловливающих их образование, путем 1) регулирования структуры металла сварных соединений 2) снижения концентрации диффузионного водорода в шве 3) уменьшения уровня сварочных напряжений. Способы регулирования структуры рассмотрены в п. 13.3. Наиболее часто для предотвращения холодных трещин применяют предварительный или последующий подогрев сварных соединений. При сварке углеродистых и низколегированных сталей, не содержащих активных карбидообразующих, подогрев может исключить закалочные структуры в шве и ЗТВ. Кроме того, подогрев способствует интенсивному удалению Нд из соединения. При невозможности или нецелесообразности применения подогрева проводят низкий или высокий отпуск сварных узлов непосредственно после сварки. Для предотвращения XT в ряде случаев (мартенситные стали небольших толщин) достаточен местный кратковременный отпуск с помощью индуктора ТВЧ или других концентрированных источников теплоты с нагревом до 1000 К в течение 2...3 мин.  [c.543]


Выбор режима подогрева при сварке или отпуска после сварки определяется требованиями отсутствия трещин и обеспечения необходимого уровня механических свойств сварного соединения. Для сварных конструкций из малоуглеродистой стали или хромомолибденовой относительно небольшой толщины — до 10—15 мм — удается обеспечить указанные требования за счет соответствующего выбора термического режима сварки без применения подогрева или отпуска сваренного изделия. При изготовлении сварных конструкций из хромомолибденовых сталей с толщиной свариваемых элементов свыше 15 мм необходим подогрев при температурах 200—400° в зависимости от жесткости изделия и содержания в стали углерода. Использование  [c.27]

Отличительной особенностью изготовления сварных узлов арматуры, и в первую очередь паровой арматуры высокого давления из литых и кованых элементов, является необходимость сварки деталей с большой толщиной стенок. При выполнении последних из перлитных теплоустойчивых сталей необходимо применение высокого подогрева и, в ряде случаев, немедленного отпуска после сварки. При сварке узлов из аустенитных сталей подогрева не требуется, но термическая обработка после сварки является обязательной.  [c.183]

Для рассматриваемых сталей и условий работы изготовляемых из них конструкций возможное снижение надежности последних обусловлено процессами, идущими при сварке или эксплуатации в интервале температур деформационного старения (200—400" С). Наличие концентраторов при воздействии цикла сварки па участки сварного соединения, нагреваемые до этих температур, может при известных обстоятельствах привести, как указывалось в и. 10, к опасности хрупких разрушений во время изготовления или испытания изделия. Наибольшее развитие процессы деформационного старения получают в случае применения кипящих сталей. Проведение последующего отпуска полностью снимает проявление этого эффекта.  [c.162]

Точность сварных конструкций зависит от жесткости свариваемых элементов, точности их обработки перед сваркой, конструктивной формы изделия, количества и расположения сварных швов, того, как производится сборка при сварке (по разметке или в приспособлении), последующего отпуска и пр. При сборке по разметке элементов с механически необработанными кромками точность сварной конструкции не превышает 9-го класса. Применение приспособлений и механической обработки кромок позволяет повысить точность до 7-го класса.  [c.111]


Низколегированные стали с содержанием углерода до 0,25% практически не закаляются при всех способах сварки с использованием режимов в широких пределах. Большинство таких сталей сваривается без применения предварительного подогрева и последующей термической обработки. При сварке сталей с толщиной более 30 мм, при сварке изделий в жестком контуре или при наличии концентраторов напряжения применяют предварительный подогрев до 100—250 °С или отпуск при 6(Ю—650 °С, а иногда совместно подогрев и отпуск.  [c.172]

Основными мерами борьбы с холодными трещинами при сварке сталей повышенной прочности являются подогрев свариваемых изделий, применение низков )д. родных электродных покрытий и флюсов, отпуск или отжиг перед сваркой, применение электродной ироволоки из стали с пониженным содержанием углерода и дополнительным легированием карбидообразующими элемента.ми или аустенитных электродов, отпуск или отжиг сварных изделий непосредственно после сварки в промежутках между сваркой отдельных жестких элементов.  [c.160]

Внутренние трещины. Внутренние трещины снижают прочность соединения и возникают, как и наружные, при сварке закаливающихся сталей на жестких режимах. Часто трещины возникают у точек, имеющих раковины. Устраняется возможность образования трещин увеличением продолжительности включения тока с одновременным увеличением давления и уменьшением силы тока, а также применением отпуска непосредственно на машине после сварки.  [c.357]

При сварке легированных термически обработанных сталей, например хромансиля и др., наименьшую прочность при переменных нагрузках в сварном соединении имеет основной металл в зоне отпуска. Аналогичное понижение предела выносливости в зоне отпуска наблюдается в сварных соединениях термически обработанных цветных сплавов (алюминиевых, магниевых и др.). Разрушение, как правило, происходит около стыковых швов при пониженных значениях предела выносливости, по сравнению с пределом выносливости основного металла в термически обработанном состоянии. Мероприятием, повышающим прочность сварных соединений легированных сталей при переменных нагрузках, является применение термической обработки изделия. Однако термическая обработка часто не восстанавливает полностью прочность элемента, которая была до сварки, но все же частично восстановление происходит. Разработан также способ повышения прочности при переменных нагрузках для соединений  [c.235]

Методы повышения прочности сварных соединений при переменных нагрузках. При сварке легированных термически обработанных сталей, например хромансиля и др., наименьшую прочность при переменных нагрузках в сварном соединении имеет основной металл в зоне отпуска. Аналогичное понижение предела выносливости в зоне отпуска имеет место в сварных соединениях термически обработанных цветных сплавов (алюминиевых, магниевых и др.). Разрушение, как правило, происходит около стыковых швов при пониженных значениях предела выносливости, по сравнению с пределом выносливости основного металла в термически обработанном состоянии. Мероприятием, повышающим прочность сварных соединений легированных сталей при переменных нагрузках, является применение термической обработки зоны сварки. Термическая обработка часто полностью не восстанавливает прочность элемента, которая была до сварки, но все же частичное восстановление достигается. Разработан также способ повышения прочности при переменных нагрузках для соединений из малоуглеродистых сталей. Для повышения прочности сварные соединения подвергаются поверхностной механической обработке обкатке роликами или, что является более простым и удобным, обдувке дробью, или обработ-  [c.244]


Если при сварке обеспечить интенсивность охлаждения, предотвращающую или ограничивающую появление перлитной составляющей в структуре металла- щва и ЗТВ, то сварку можно осуществлять без применения последующей высокотемпературной термообработки, ограничиваясь последующим отпуском с целью снятия сварочных напряжений.  [c.168]

Местный высокий отпуск применяется для крупных деталей в местах, где непосредственно производилась сварка, с целью снижения уровня сварочных напряжений и повышения пластичности металла. Нагрев в этом случае производится с помощью переносных индукционных термических печей или газовых горелок. Нагрев может также осуществляться наложением дополнительного слоя металла с применением соответствующего режима сварки. Местный отпуск производят в кондукторах сразу же после сварки. При этом следует отметить, что неравномерный местный нагрев может вызвать свои нежелательные остаточные напряжения.  [c.166]

Препятствием к применению этих сталей для изготовления корпусов, рассчитанных на погружение на большие глубины, является, как это указывалось выше, увеличение толщины обшивки до 150—200 мм, что приводит к резкому увеличению веса. Кроме того, при таких толщинах закалку, отпуск, сварку и контроль качества производить очень трудно.  [c.332]

Область применения сварных колёс ограничивается неответственными передачами или передачами, в которых от материала колеса не требуется высоких механических свойств, если при этом сварные колёса оказываются дешевле литых (при единичном изготовлении). Содержание углерода в материале обода может быть повышено, если производить сварку обода и дисков в нагретом состоянии и подвергать колесо тщательному отжигу или длительному отпуску при высокой температуре(например, при 650°). Следует отметить, что американская фирма Вестингауз выполняет колёса дла главных судовых турбинных передач сварными.  [c.307]

При применении в связи с эксплуатационной необходимостью металлов с пониженной свариваемостью проектировать конструкции следует с учетом этого свойства. Для сведения к минимуму неблагоприятных изменений свойств металла сварного соединения и исключения в нем дефектов необходимо применять виды и режимы сварки, оказывающие минимальное термическое и другие воздействия на металл, и проводить технологические мероприятия (подогрев, искусственное охлаждение и др.), снижающие влияние на него сварочных воздействий. Термическая обработка после сварки (нормализация, закалка с отпуском и др.) может в значительной степени устранять неоднородность свойств в сварных заготовках. Прочность зоны сварного соединения может быть повышена механической обработкой после сварки прокаткой, проковкой и др.  [c.288]

Крышка турбины, опора пяты, верхнее и нижнее кольца относятся к стационарным деталям направляющего аппарата. Состоят они, как правило, из нескольких частей (секторов), габариты которых определяются условиями транспортировки и производства. Число секторов принимают четным, чтобы иметь сквозные меридианные разъемы, необходимые при обработке стыков. Выполняются эти детали сварными из проката МСтЗ, реже литыми из стали 20ГСЛ или ЗОЛ. Можно применять высокопрочный чугун ВПЧ 40-5, хорошо зарекомендовавший себя на Камской ГЭС. Выбор материала зависит от напряженного состояния деталей и условий производства. В последние годы в отечественном гидротурбостроении преимущественное применение нашли сварные конструкции. Они отличаются наименьшей затратой материалов для заготовок и наименьшей массой, требуют меньших припусков на обработку, позволяют точно выдерживать толщину стенок, в них отсутствуют внутренние и поверхностные дефекты, неизбежные в отливках, их фактическая прочность больше соответствует расчетным значениям. Общим недостатком сварных конструкций является наличие остаточных напряжений и вызываемых ими деформаций. Для устранения этих напряжений обязательно применение термической обработки (отпуска и нормализации) после сварки. Допустимые деформации сварных деталей должны находиться в пределах припусков на обработку.  [c.96]

Для сварки аустенитных сталей с перлитными большего предпочтения заслуживают аустенитные электроды, применение которых обеспечивает получение пластичных структур корневых слоев шва при перемешивании с перлитной сталью. При использовании для данных соединений электродов перлитного класса участки шва, примыкающие к аустенитной стали и обо-гаш,енные в первую очередь хромом и никелем, будут хрупкими из-за образования в них марте нситной структуры при сварке. Получение шва, свободного от треш,ин, потребует в этих условиях проведения сварки с высоким подогревом и вызовет необходимость отпуска сваренного изделия. В отличие от этого, при использовании аустенитных электродов подогрев либо вообш,е не производится, либо его температура выбирается на 100—200 ниже требуемой при сварке данной перлитной стали. Отпуск для улучшения  [c.46]

Хромистые ферритные стали при сварке и некоторых видах термического воздействия приобретают склонность к межкрис-таллитной коррозии. Охрупчивание и снижение коррозионной стойкости связаны с выделением карбида хрома и других хрупких фаз по границам зерен и обеднением хромом твердого раствора в областях, прилегающих к границам зерен. Рост зерна в околощов-ной зоне и в металле сварного шва ограничивают путем уменьшения погонной энергии сварки. По этой причине нежелательно применение сопутствующего или предварительного подогрева и последующего отпуска.  [c.246]

ХМФА и подобные >0,45 Плохая, IV группа При сварке высокая склонность к появлению трещин в металле шва и околошовной зоне, несмотря на применение специатьньш технологических мер подогрева, промежуточного отпуска и др. Качество сварных соединений пониженное  [c.97]

При сварке стали 15Х25Т во избежание образования трещин в околошовной зоне желательно применение местного подогрева основного металла в зоне сварного соединения до 150—200° С. Эта операция особенно необходима при сварке стали в листе толщиной более 12 мм. После сварки листа, особенно больших толщин, рекомендуется проводить отпуск при 600° С для снятия внутренних напряжений и возможных отрицательных последствий прохождения стали через интервал 450—520 С.  [c.63]


Свариваемость сталей с увеличением содержания углерода ухудшается. Содержание углерода более 0,30% способствует склонностп сталей к перегреву и закалке, образованию холодных трещин в сварном соединении н пор в металле шва. Избежать образования трещин и пор при сварке этих сталей можно путем применеп1 я предварительного подогрева и последующего высокотемпературного отпуска, а также применением специальных электродов (с малым содержанием водорода). Предварительный подогрев способствует снижению закаливаемости стали, а последующий высокий отпуск улучшает структуру и свойства закаленных зон, а также уменьшает и выравнивает остаточные сварочные напряжения.  [c.46]

При сварке сталей мартенситного и мартенснтно-ферритпого класса в околошовной зоне, а при составе шва, близком к составу основного металла, и в шве могут создаваться закалочные мартенситные структуры, имеющие высокую твердость и малую пластичность. При определенных условиях это может привести к появлению в шве и околошовной зоне холодных трещин. Образование трешин исключается предварительным и сопутствующим подогревом до 200—450° С, снижением содержания в металле шва водорода и применением последующего высокого отпуска. Для получения высокой прочности сварного соединения до и во время сварки выполняется предварительный и сопутствующий подогрев. При невозможности подогрева, а иногда и при его наличии после сварки осуществляется соответствующая термическая обработка. При отсутствии (по каким-либо причинам) подогрева и последующей термической обработки используются сварочные материалы, дающие металл шва с аустенит-ной структ>рой.  [c.381]

Применение высокого отпуска. Высокий отпуск является эффективнылг средством, позволяющим восстановить пластические свойства металла, утраченные в результате протекания пластических деформаций п старения металла в концентраторах (рпс. 10). Одновременно общий высокий отпуск значительно снижает остаточные напряжения и накопленную потенциальную энергию при сварке. Местный отпуск применяется главным образом как средство восстановления пластичности металла.  [c.115]

Сталь ЗОХГС применяется в конструкциях, которые после сварки проходят соответствующую термическую обработку, повышающую прочность и пластичность сварных соединений. Технология сварки этой стали должна обеспечить такой тепловой режим, при котором твердость околошовной зоны получилась бы минимальной. Для сварки этой стали толщиной от 2 до 10 мм рекомендуется применять проволоку Св-20ХМА. В процессе сварки нужно предотвратить выгорание хрома и марганца, поэтому сварка ведется под флюсами с пониженным содержанием кремнезема. Лучшим для этой цели является флюс АН-10. Сварку выполняют проволокой диаметром 3 мм при силе тока 340—370 а со скоростью сварки 30 м час или диаметром 4 мм при силе тока 650—570 а со скоростью сварки 14 м/час. При сварке металла толщиной более 10 мм усиливается легирование шва элементами основного металла. Поэтому металл большой толщины, например 80 мм, рекомендуется сваривать с закладкой в разделку низкоуглеродистой проволоки марки Св-08А. Второй и последующие слои следует сваривать проволокой Св-20ХМА. Применение присадки, уложенной в шов и расплавленной при наложении первого шва, не всегда гарантирует полный провар, особенно при сварке кольцевых швов. После сварки изделие подвергают термической обработке по режиму закалка в масле от 880° и отпуск при температуре 520°.  [c.84]

Применение высокого отпуска. Высокий отпуск является эффективным средством, позволяющим восстановить пластические свойства металла, утраченные в результате закалки, протекания пластических деформаций или старения металла. При этом происходит выравнивание пластических свойств по сечению детали. Одновременно общий высокий отпуск значительно снижает остаточные напряжения и тем самым устраняет нотенциальную энергию, накопленную конструкцией при сварке.  [c.259]

Невозможность снятия остаточных напряжений при термической обработке сварной разнородной конструкции указывает на бесполезность этой операции для снятия напряжений. Ее применение в данном случае может быть оправдано лишь необходимостью отпуска закаленных участков в швах или в зоне термического влияния сварного соединения. Отпуск для этих целей бывает необходим в сварных соединениях перлитной стали с 12-процентной хромистой, а также в соединениях перлитной стали с аустенитной, когда в качестве малолегированной составляющей используются закаливающиеся при сварке стали.  [c.180]

Ножевая коррозия, наблюдаемая при сварке высоколегированных сталей, связана с применением многослойных швов. Полагают, что основной металл в участках, непосредственно прилегающих к сварному шву, подвергается при наложении первого шва нагреву до 1200—1300°, а затем при наложении последующих швов — отпуску в интервале температур 600—700°. При этом вдоль границ зерен возникают структурная неоднородность и остаточные напряжения. Известны случаи разрушения аппаратуры, изготовленной из хромоникелевых сталей с ниобием, вследствие ножевой коррозии через несколько месяцев эксплуатации в азотной кислоте и стали Х18Н12М2Т в 6/о-ной серной кислоте после 24 час. испытания 1.  [c.150]

Отпуск сварных конструкций применяют для изменения структуры и свойств металла и снижения остаточных напряжений. Применение отпуска для снижения остаточных напряжений целесообразно, если предъявляются повышенные требования к прочности сварной конструкции и точности ее размеров при последующей эксплуатации. Кроме того, иногда целесообразно восстановить пластические свойства в зонах, где концентрировались пластические деформадии при сварке, а также повысить сопротивляемость хрупким разрушениям. В остальных случаях применение отпуска  [c.237]

Еще более трудно реализовать такую прочность стали в конструкциях, работающих в условиях сложного напряженного состояния, и особенно в сварных конструкциях, в которых имеются участки металла с неблагоприятной структурой (литой металл сварного шва и крупнозернистый рекристаллизованный металл в околошовной зоне со следами перегрева). Кроме того, прочность сварных конструкций из легированной стали с высоким содержанием углерода в существенной мере лимитируется повышенной склонностью к задержанному разрушению и образованию холодных трещин при сварке. Это вызывает необходимость применения сложных технологических приемов (сопутствующий подогрев, промежуточные отпуски и отжиги с последующей полной тремообработкой), кото-  [c.267]

Полуферритные хромистые стали (марок 1X13, Х18, Х17К2) также склонны к частичной закалке и трещинообразованию, поэтому при их сварке желателен предварительный подогрев до 200—250°. Сварка их ведется теми же способами, что и сварка хромистых сталей мартенситного класса. Применяется нормальное или слегка науглероживающее пламя. Эти стали также склонны к перегреву и росту зерна, вследствие чего их следует сваривать с максимально возможной скоростью. После сварки изделие следует охладить до 100— 150° и затем подвергнуть отпуску с нагревом в печи до установленной температуры. Стали этого типа реже дают грещины при сварке благодаря наличию в их структуре достаточно пластичной ферритной составляющей. Высоколегированные ферритные хромистые стали (марок Х17, Х28) весьма склонны к росту зерна в зоне термического влияния при длительном нагреве. Поэтому применение газовой сварки для этих сталей вообще нежелательно.  [c.213]


Тигельные индукционные печи послужили прообразом многочисленных установок индукционного нагрева с целью осуществления различных технологических операций. В 1935 г. проф. В. П. Вологдиным и инж. Б. Н. Романовым был предложен новый метод поверхностной закалки при индукционном нагреве, быстро завоевавший всеобщее признание благодаря невиданной ранее производительности, малой энергоемкости и огромным возможностям автоматизации процесса. В развитии этого метода решающую роль сыграла лаборатория В. П. Вологдина в ЛЭТИ. Большую роль сыграли также группы, руководимые К- 3. Шепеляковским, Г. И. Бабатом, М. Г. Лозинским и др. Далее индукционный нагрев получил широкое применение в кузнечном и прокатном производствах, где мощность отдельных установок достигает сотен мегаватт, для сварки, пайки, отжига, отпуска, для получения материалов сверхвысокой чистоты и для других целей. В наше время невозможно  [c.5]

Наибольшее применение взрыв находит при штамповке и сварке, причем сварка может сочетаться с упрочнением. Получение композитных плакированных листовых материалов — основная область применения сварки взрывом. Листовые заготовки из стали, например Ст. 3, могут быть плакированы с обеих сторон листами нержавеющей стали Х18Н10Т, причем толщина наружных слоев составляет всего 10—20% толщины среднего слоя. Листы для сварки укладывают пакетом, сверху насыпается слой взрывчатого вещества, взрыв которого осуществляется от детонатора. Под действием высокого давления происходит пластическая деформация поверхностных слоев соединяемых листов, они разогреваются и сплавляются. Под действием ударной волны зона соединения приобретает, волнистость, прочность соединения оказывается исключительно высокой. Трехслойный лист после закалки и отпуска обладает таким сочетанием механических свойств, которое невозможно получить у каждого из отдельных материалов. Нержавеющая сталь, допустим, имеет предел прочности 60 кгс/мм , в композиции с более прочной сталью ЗОХГСА (а зависимости от соотношения толщины листов), предел прочности может быть 140—150 кгс/мм , относительное удлинение при этом снизится и вместо 30% составит 7 или 10%.  [c.140]

Исследованиями установлено, что сварка теплоустойчивых сталей больших толщин должна производиться с применением предварительного и сопутствующего подогрева. Для уменьшения величины остаточных напряжений сварное соединение после сварки должно подвергаться отпуску при температуре, не превышающей температуру отпуска стали до сварки. Во избежание значительного укрупнения зерен и падения ударной вязкости по линии сплавления, сварка должна осуществляться на режимах с ограниченными тепловложе-ниями. Для предотвращения развития диффузионных процессов необходимо стремиться максимально приблизить химический состав шва к составу основного металла. Наилучшие результаты по получению заданного (требуемого) химического состава металла шва определены при легировании через сварную проволоку.  [c.121]

При наличии требования по стойкости металла шва к межкрнсталлитной коррозии. Для сварки стали, работающей без циклических резких изменени температуры, Стойкость наплавленного металла при испытаниях на межкристаллитную коррозию аналогична стойкости наплавленного металла электродами Э, -1Б. Тем самим для работы в условиях особо химически активных сред при температуре плюс 450—600°С необходимо применение стабилизирующего отпуска при температуре 870—920°С  [c.359]


Смотреть страницы где упоминается термин Отпуск — Применение при сварке : [c.218]    [c.55]    [c.132]    [c.30]    [c.55]    [c.319]    [c.125]    [c.33]    [c.124]    [c.915]    [c.98]    [c.87]    [c.206]    [c.856]    [c.39]   
Проектирование сварных конструкций в машиностроении (1975) -- [ c.78 , c.80 , c.127 ]



ПОИСК



280 — Применение низкого отпуска 684 — Сварка

Отпуск

Отпуская ось

Сварка Применение



© 2025 Mash-xxl.info Реклама на сайте