Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема динамики точки о движении центра масс

Глава ХХП. Общие теоремы динамики материальной тонки и системы 579 104.ТЕОРЕМА О ДВИЖЕНИИ ЦЕНТРА МАСС МЕХАНИЧЕСКОЙ СИСТЕМЫ  [c.579]

Таким образом, при исследовании поступательного движения твердого тела это тело можно рассматривать как материальную точку, сосредоточив всю массу тела в его центре масс и перенеся в эту точку все действующие на тело внешние силы. При этом на основании теоремы о движении центра масс основным уравнением динамики поступательного движения твердого тела будет  [c.584]


Теорема о движении центра масс -всегда применяется при исследовании движения центра масс системы. Методика решения задач в этом случае не отличается от той, которую мы применяли в динамике материальной точки. Теорема с успехом может заменить во многих случаях теорему об изменении количества движения системы. Ее особенно удобно применять в тех случаях, когда выполняется закон сохранения движения центра масс. При решении задач с использованием данной теоремы рекомендуется следующая последовательность действий.  [c.185]

Задачи динамики поступательного движения твердого тела решаются посредством теоремы о движении центра масс материальной системы. Действительно, применив эту теорему, мы определим уравнение траектории, скорость и ускорение центра масс твердого тела. При поступательном же движении твердого тела траектории всех точек одинаковы, а скорости и ускорения их соответственно равны.  [c.198]

Поступательное движение твердого тела. Наиболее общим приемом составления уравнений динамики поступательного движения твердого тела является применение теоремы о движении центра масс материальной системы. Теорема преимущественно используется в проекциях на оси декартовых координат. В число данных и искомых величин должны входить масса твердого тела, уравнение движения одной из его точек, внешние силы системы. Решение вторых задач упрощается в случаях, когда главный векюр внешних сил, приложенных к твердому телу, постоянен либо зависит только от 1) времени, 2) положений точек системы, 3) скоростей точек системы, 4) ускорений точек системы. Труднее решать вторые задачи, в которых главный вектор внешних сил одновременно зависит от времени, положения, скоростей и ускорений точек системы.  [c.565]

Прямая задача динамики для системы материальных точек сводится к решению системы ЗN дифференциальных уравнений, так как уравнение движения вида (11.1) для каждой из N точек системы дает в проекции на координатные оси три дифференциальных уравнения для координат точки хД/),>>Д ), ,(/). Строгое аналитическое решение удается найти лишь в исключительных случаях, поэтому обычно используют приближенные методы. Однако существует несколько строгих общих законов, которые хотя сами по себе и не позволяют в общем случае найти траектории отдельных точек системы, вместе с тем дают важную информацию о движении системы в целом. Это закон (или теорема) о движении центра масс и три закона изменения и сохранения импульса, момента импульса и механической энергии системы материальных точек. Их выводу и обсуждению посвящена настоящая глава.  [c.38]


Движение свободного твердого тела в общем случае можно разложить на поступательное движение вместе с центром масс и на сферическое вокруг центра масс. По теореме о движении центра масс системы в этом случае можно определить только поступательное движение тела кгж движение материальной точки, а сферическое движение приходится рассматривать особо, пользуясь другими теоремами динамики. Таким образом, вопрос о том, можно ли рассматривать то или иное тело как материальную точку, решается в зависимости от характера движения тела, а не от его размеров.  [c.365]

Эта теорема позволяет нам уточнить, если мы того желаем, бедную схему механики, доставляемую аналитической динамикой. Если мы довольствуемся рассмотрением движения какого-либо тела как жесткого, то мы можем найти это движение по результирующему моменту, если только установлено существование какой-нибудь неподвижной точки или определено движение центра масс. Для этого нам нужно знать о самом теле только его эйлеров тензор относительно соответствующего места Хо в системе покоя.  [c.74]

Здесь не подчеркнуты важнейшие признаки, по которым та или иная система координат может быть названа (выбрана) системой отсчета движения материальной точки или совокупности точек просматривается попытка смешивать систему координат и систему отсчета. Приведем еше один пример, где такое смешивание наблюдается в более явной форме Отметим, что понятие сопутствующей системы отсчета в теоретической механике давно известно. Оно используется в основных теоремах динамики при выделении переносной системы о т-счета, поступательно движущейся в инерциальном пространстве вместе с центром масс рассматриваемой механической системы. .. [3. С. 17]. (Разрядка наша. - И.Т.)  [c.9]

Движение свободного твердого тела. Как известно, движение свободного твердого тела слагается из поступательного движения вместе с полюсом, в качестве которого при решении задач динамики выбирают обычно центр масс С тела, и из движения вокруг центра масс, i k OKpyr iie-подвижной точки (см. 63). Если на тело действуют внешние силы F, F%, то движение полюса С описывается теоремой о движении.центра масс тас= 1 г> где m — масса тела. В проекциях на неподвижные оси это равенство дает  [c.344]

Перейдем непосредственно к динамике твердого тела. В главе VIII были указаны два простейших движения твердого тела поступательное и вращательное. Кинематически изучение поступательного движения тела сводится к изучению движения любой его точки, в частности центра масс. По теореме о движении центра масс (п. 1.3 гл. XIX, формулы (19.9) и (19.13)) динамически изучение поступательного движения тела сводится к соответствующей задаче динамики точки. Поэтому для самостоятельного изучения остается лишь второе простейшее движение твердого тела — вращение вокруг неподвижной оси, к изучению динамики которого мы и приступим.  [c.377]

Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]


В связи с этим следует обратить внимание на различие между уравнениехм (115) и уравнениями, выражающими общие теоремы динамики системы, рассмотренные в предыдущих параграфах. Как мы видели выше, в уравнения, выражающие теоремы о количестве движения, о движении центра масс и о кинетическом моменте системы, внутренние силы не входят, но реакции связей, если они относятся к внешним силам, из этих уравнений не исключаются в уравнение же, выражающее теорему о кинетической энергии системы, внутренние силы войдут, так как работа внутренних сил вообще не равна нулю. Чтобы убедиться в этом, достаточно рассмотреть следующий простой пример пусть имеем систему, состоящую из двух материальных точек, притягивающихся по какому угодно закону (например, по закону Ньютона). Силы взаимного притяжения этих точек являются для рассматриваемой системы внутренними силами эти силы равны по модулю и направлены по прямой, соединяющей данные точки, в противоположные стороны. Ясно, что если под действием этих сил точки будут сближаться, то работа каждой силы будет положительна и, следовательно, сумма работ внутренних сил не будет равна нулю, а будет больше нуля.  [c.489]

Введение. Твердое тело представляет собой частный случай механической системы точек, когда расстояния между любыми двумя точками системы остаются постоянными во все время движения. Одним из наиболее эффективных методов изу-чершя движения твердого тела под действием приложенных к нему сил является метод, основанный на применении основных теорем динамики системы. Для изучения поступательного движения тела мы будем исходить из теоремы о движении центра масс при изучении вращения твердого тела около неподвижной оси наиболее рационально пользоваться теоремой об изменении кинетического момента. На примерах изучения простейших движений твердого тела под действием приложенных сил весьма отчетливо выявляется значение основных теорем динамики системы, позволяющих исследовать свойства движений систем ма-териальных точек, подчиненных некоторым дополнительным условиям (связям). Основные теоремы динамики системы были исторически первым, наиболее простым и естественным методом изучения движения несвободных механических систем точек, и в частности изучения динамики твердого тела В последующем развитии механики Лагранжем был создан метод обобщенных координат, позволяющий свести составление дифференциальных уравнений движения системы с 5 степенями свободы к ясной, логически безупречной последовательности алгебраических преобразований, однако физическая наглядность рассуждений была в значительной мере утрачена  [c.400]

Шесть уравнений движения тела мы получим, постулируя обобщение основных теорем динамики систем материальных точек теоремы о движении центра масс и теоремы об изменении кинетического момента (см. гл. IV). В некоторых случаях удобно применять обобщение теоремы об изменении кинетической энергии. В случаях, когца рассматривается движение свободного тела или тела с голономными связями, удобны уравнения Лагранжа  [c.372]

О теоремах динамики для движения относительно центра масс. В предыдущем пункте мы видели, что основные теоремы динамики в неинерциальной системе отсчета можно записать в той же форме, что и в иперциальной. Отличие заключается только в том, что в формулах, выражающих основные теоремы, появляются добавочные члены, обусловлезшые иеииерцнальностью системы отсчета.  [c.145]

При переводе курса динамики i) Ламба (Lamb) нами по возможности сохранена терминология автора даже в тех случаях, когда из всех существующих терминов для одного и того же понятия чаще применяется как раз не термин автора, а какой-либо другой. Например, нами оставлены без изменения термины . центр масс вместо чаще употребляемого центра тяжести", кинетическая энергия" вместо живой силы и т. д. Но в то же время для теорем о количестве движения, о моменте количеств движения, о кинетической энергии мы сохранили название теорема" вместо употребляемого автором названия принцип.  [c.3]


Смотреть страницы где упоминается термин Теорема динамики точки о движении центра масс : [c.119]    [c.179]    [c.110]    [c.2]   
Справочник металлиста Том 1 (1957) -- [ c.169 ]



ПОИСК



ДИНАМИКА Динамика точки

Движение центра масс

Движения масса

Динамика точки

Масса точки

Масса центру масс

Теорема движения

Теорема динамики точки

Теорема о движении центра мас

Теорема о движении центра масс

Теоремы динамики

Точка центра

Точка — Движение

Центр масс



© 2025 Mash-xxl.info Реклама на сайте