Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дислокации линейные поверхности

При прохождении процессов ИП в контактируемых поверхностях могут измениться условия деформационного упрочнения кристаллической решетки. Во-первых, образование медной пленки может привести к снижению эффективных касательных напряжений в подложке и тем самым обусловить уменьшение процессов наклепа, связанного с упругим взаимодействием дислокаций и работой дислокационных источников. В этом случае упругое взаимодействие линейных дефектов снижается не только по причине уменьшения вероятности множественного скольжения их по различным системам скольжения, но и снижением интенсивности работы источников дислокаций, в частности источников Франка— Рида. Понижение значений касательных напряжений может оказаться недостаточным для преодоления сил линейного натяжения и прогибания дислокационного сегмента до критического радиуса при работе источника Франка—Рида, в результате чего не происходит самопроизвольной генерации дислокационных петель. Во-вторых, наличие упругих напряжений на границе раздела между пленкой и основной матрицей может привести к тому, что выход дислокаций из приповерхностного слоя на поверхность будет затруднен и приведет к возрастанию упругих напряжений материала под пленкой. Помимо этих явлений, нужно еще учитывать взаимодействие дислокаций со свободной поверхностью пленки. Известно, что сила, действующая на единицу длины дислокации и стремящаяся продвинуть дислокацию к поверхности, имеет величину,  [c.28]


Другой путь, как это ни парадоксально, прямо противоположен и состоит в создании металлов, имеющих возможно больше нарушений правильной кристаллической структуры. Эти нарушения микроструктуры — точечные и линейные (дислокации) — могут быть получены или сочетанием пластического деформирования металла (наклепа) с термообработкой, или путем нейтронного облучения. При этом из кристаллической решетки выбиваются атомы и в решетке создаются или свободные места — вакансии, или атомы без места — внедренные атомы. Эти нарушения микроструктуры делают металл более прочным, так как затрудняют передвижение внутри кристалла, подобно тому как шероховатые поверхности двух брусков препятствуют их скольжению.  [c.37]

Результаты количественной обработки фотографий со следами скольжения по базисным плоскостям показывают, что на стадии А среднее расстояние между линиями скольжения б и длина L остаются постоянными. В соответствии с этим п (число дислокаций на ступеньку скольжения, вышедших на поверхность кристалла) при низкой температуре линейно возрастает с увеличением у и практически постоянно при комнатной температуре. Для Zn при комнатной температуре среднее значение б изменяется от 300 нм при v=0- 5% до 45 нм при у= =0- 16%, а длина линий скольжения от 20 до 3 мм соответственно. Число пл 224-25.  [c.205]

В зависимости от того, перпендикулярен вектор Бюргерса к оси дислокации или параллелен ей, различают краевые (прямолинейные) и винтовые дислокации. Из-за наличия линейного натяжения дислокации не могут обрываться внутри кристалла, они выходят обоими концами на боковые поверхности кристалла или закрепляются внутри кристалла на атомах примесей или других включениях. В общем случае дислокации внутри кристалла представляют собой замкнутые кривые, называемые дислокационными петлями. Механические напряжения в области, охватываемой дислокационной петлей, больше, чем вне ее. Дислокации под действием механического напряжения перемещаются внутри кристалла. Внешне движение их аналогично движению в среде с трением. Чтобы вызвать перемещение дислокаций необходимо приложить некоторое начальное усилие для снятия дислокации с барьера, на котором она обычно закреплена.  [c.369]

Если вектор разрыва перемещений вдоль Линейные дислокации поверхности дислокаций как функция ко-  [c.542]

Таким образом, можно вводить и рассматривать изолированные линии Ж как характеристики соответствующих дефектов— дислокаций ). Можно различать типы линейных дислокаций в зависимости от вида скачка перемещений на поверхности 2, ограниченной линией X.  [c.543]


Кроме линейных дислокаций и дислокаций, распределенных по поверхности, можно вводить и строить теорию дислокаций, распределенных непрерывно по объему при этом вводится начальное состояние , но исключается возможность введения перемещений из соответствующего начального состояния . Содержание существующих теорий дислокаций, непрерывно распределенных по объему, выходит за рамки предлагаемой книги.  [c.543]

Из сказанного следует, что механизм окисления металла во многом зависит от условий диффузии компонентов в оксидной пленке. Твердофазная диффузия веществ в твердом теле (в том числе и в оксидных пленках) определена наличием в ньм несовершенств и дефектов. Несовершенства в твердом теле разделяются на две следующие категории точечные дефекты или дефекты решетки, линейные и поверхностные дефекты. К точечным дефектам относятся вакансии, внедренные атомы и атомы, занимающие не свои узлы. Линейные и поверхностные дефекты включают дислокации, границы зерен,. а также внутренние и наружные поверхности.  [c.48]

Наряду с объемной диффузией, которая протекает через точечные дефекты кристаллической решетки, в поликристаллическом теле имеются и дислокации, границы зерен, внутренние и наружные поверхности, через которые также протекает диффузия. В общем диффузия вдоль таких линейных и поверхностных дефектов, протекает быстрее, чем диффузия атомов через точечные дефекты в решетке кристалла. Имеются данные о том, что энергия активации диффузии по границам зерен в первом приближении равна примерно половине энергии активации объемной диффузии [62]. Вследствие более низкой энергии активации, относительное значение диффузии по границам зерен возрастает с увеличением тем- пературы медленнее, чем при объемной диффузии.  [c.51]

Характерными параметрами структуры являются плотность его линейных элементов в единице объема (примером может служить плотность дислокаций) и удельная поверхность — универсальный показатель дисперсности структуры, не зависящий от формы частиц. Показатели твердости и прочности являются обычно простыми линейными функциями удельной поверхности. Кроме рассмотренных параметров существенное значение имеют, например для жаропрочных сталей, упрочненных дисперсной фазой, такие факторы, как число частиц в единице объема и среднее расстояние между частицами дисперсной фазы.  [c.211]

Повышение плотности дислокаций, очевидно, связано с появлением термических напряжений, которые, в свою очередь, обусловлены различием удельных объемов и коэффициентов линейного расширения одновременно существующих фаз. Дополнительное увеличение плотности дислокаций вызывает и импульс отдачи, обусловленный испарением материала с поверхности. Приведенные данные об изменении дислокационной структуры в зоне воздействия лазерного излучения в определенной мере объясняют наблюдаемые эффекты упрочнения материала.  [c.13]

При обычном пластическом деформировании кристаллической решетки имеют место два взаимосвязанных процесса упрочнение кристалла и пластический сдвиг. Явление упрочнения в основном обусловливается упругим взаимодействием дислокаций, оставшихся внутри кристалла, в то время как пластический сдвиг связан с линейными дефектами, вышедшими на поверхность по той или другой системе скольжения. Прочностные и пластические свойства металлов характеризуются кривыми упрочнения а = = / (е), где а — скалывающие напряжения в определенной системе скольжения е — деформация кристалла. Обычно кривая упрочнения имеет три четко выраженные стадии, каждая из которых связана с различным характером движения и взаимодействия дислокаций.  [c.27]


Согласно высказанным выше предпосылкам следует ожидать некоторого упрочнения медной пленки, сформировавшейся между контактируемыми поверхностями, ввиду того, что дислокации внутри пленки будут отталкиваться от поверхностей раздела фаз. Однако это явление, по-видимому, не имеет места, потому что толщина пленки сравнима с дальнодействующим упругим полем дислокации, в результате чего линейные дефекты не могут закрепляться. Этому также способствует значительная тепловая энергия в контакте, сравнимая с энергией активации движения дислокаций.  [c.30]

В реальном кристалле имеются дислокации. Сдвиг развивается не синхронно, а последовательно, путем перемещения дислокации (рис. 1-9, II). В верхней части кристалла, расположенной выше линии АА, имеется лишняя плоскость, заполненная атомами (линейная дислокация). Под действием приложенного напряжения т она перемещается, пока не выйдет на поверхность кристалла. Для перемещения дислокации требуется напряжение, на несколько порядков меньше, чем для синхронного сдвига.  [c.20]

В реальных кристаллах источниками и стоками вакансий являются свободные поверхности, границы зерен и блоков, трещины и поры, линейные краевые дислокации и дефекты упаковки атомов, царапины на поверхности и др. При этом т]в = —  [c.74]

Пластическое деформирование сопровождается увеличением числа линейных несовершенств атомной решетки или так называемых дислокаций, которые характеризуются смещением атомов. Плотность дислокаций (число линий дислокаций на 1 см поверхности) в исходном металле составляет примерно 10, а скольжение в процессе пластического деформирования приводит к увеличению плотности дислокаций до 10 ... Ю . Увеличение плотности дислокаций к появление зазубрин измельченных зерен и блоков металла повышает сопротивление дальнейшему скольжению, что объясняет увеличение прочности пластически деформированного металла. Разумеется, рост плотности дислокаций и повышение прочности не может быть беспредельным и зависит от вязкости металла. Следовательно, чем более вязкая сталь, тем большие возможности имеются для увеличения ее прочности путем пластического деформирования.  [c.15]

Таким образом, немногочисленные данные показывают, что ингибиторы могут эффективно подавлять коррозию сталей под напряжением. Однако пока не установлена зависимость между способностью ингибиторов тормозить коррозию под напряжением и их строением, что не позволяет научно обоснованно подходить к их выбору. На основе теоретических соображений можно пред-. положить [103], что при воздействии растягивающих напряжений наиболее эффективными ингибиторами будут являться те, которые хорощо адсорбируются на отрицательно заряженной поверхности растянутого металла. Это прежде всего ингибиторы катионного типа, а также ингибиторы, образующие На поверхности плотные пленки. В случае пластической деформации, когда в кристаллической решетке металла образуются линейные дефекты — дислокации, сжатая часть которых заряжена положительно, а растянутая отрицательно, можно ожидать, что эффективными ингибиторами могут являться вещества Как катионного, так и анионного типа, а также ингибиторы образующие плотные полимолекулярные слои или пленки.  [c.65]

Слабыми местами считаются границы зерен у сплава, так как именно в этих местах наблюдается скопление огромного количества точечных и линейных дефектов (вакансии, дислокации и т. д.), которые при высоких температурах имеют большую энергию, что облегчает прохождение диффузионных процессов. При небольшом размере зерна у материала при ползучести происходит перемещение одного зерна относительно другого вдоль поверхности их раздела, т. е. наблюдается скольжение и дислокации могут переползать на новые плоскости, что совсем нежелательно.  [c.138]

Следует обратить внимание на необычно низкое значение Do и низкое значение энергии активации диффузии в тонких нитевидных кристаллах ( 0,3 от Q для монокристалла). Несмотря на широкий диапазон изменения этих величин (Q меняется более чем в 3 раза, а Do — на 8 порядков), сохраняется линейная связь между Do и Q (рис. 37), впервые наблюдавшаяся в объекте с неизменным химическим составом, в котором меняется только структура. Очень Низкое значение энергии активации диффузии в этих опытах можно связать с тем, что из-за отсутствия источников (гладкая поверхность, нет дислокаций) концентрация вакансий не меняется с температурой и энергия активации диффузии равна энергии перемещения вакансий.  [c.104]

Точечный дефект представляет собой в высшей степени локальный дефект, влияние которого простирается лишь на один или несколько атомных диаметров от его центра. К точечным дефектам относятся вакансии (не занятые атомами узлы), межузельные атомы, растворенные атомы и свободные атомы в упорядоченной решетке. Линейный дефект представляет собой дислокацию. Этот тип дефектов будет подробно рассмотрен ниже. Поверхностный дефект представляет собой плоскость или криволинейную поверхность, образованную множеством дефектов в кристалле. К ним относятся границы зерен, границы субзерен, границы двойников и скопления дефектов в атомных плоскостях внутри кристаллов. Объемные дефекты — это трехмерные дефекты, такие, как пустоты, пузырьковые включения, частицы, ориентированные отлично от окружающей матрицы, или скопления точечных дефектов в упорядоченной матрице.  [c.48]

В) Неверно. Винтовая дислокация представляет собой линейный дефект кристаллической решетки, при котором кристалл фактически состоит из единственной атомной плоскости, изогнутой по винтовой поверхности.  [c.28]

На основе конечкоэлементной модели в предположении кусочно-линейных поверхностей текучести и упрочнения дается матричное описание упругопластической системы. Рассматривается ее квазистатическое поведение при воздействии повторно-переменных нагрузок и дислокаций. Изучение охватывает широкий класс законов упрочнения, а также ситуаций, при которых изменения геометрии существенны для условий равновесия, о их влияние может быть выражено с помощью билинейных членов, содержащих исходные напряжения и дополнительные смещения. Установленная система положений предназначается в качестве основы для прикладной теории, характеризующейся высокой степенью общности. Она включает дальнейшее развитие статической (Мелан) и кинематической (Коктер) теорем о приспособляемости, а также методы для ограничения сверху величин перемещений, напряжений и пластических деформаций в условиях приспособляемости.  [c.75]


Металлографический метод обнаружения дислокаций является прямым методом наблюдения дефектов. Дислокации на поверхности щлифа выявляются при термическом, химическом и электролитическом травлении- Термический метод выявления дислокаций основан на том, что при высокой температуре в месте выхода линии дислокации на поверхность шлифа идет процесс направленного диффузионного перемещения атомов. Этот процесс перемещения протекает так, что устанавливается механическое равновесие сил поверхностного натяжения и линейного натяжения дислокаций. Это приводит к образованию ямки в месте выхода дислокации. Атмосфера, в которой происходит нагрев, влияет на глубину и форму ямки, поскольку меняется величина поверхностного натяжения.  [c.55]

Дислокации, представляющие особый вид линейных дефектов кристалла (см. стр. 363), выявляются по специальным фигурам травления — группировкам пятен травления. Эти пятна связаны с более сильной трави-мостью металла в области выхода скоплений дислокаций а поверхность, а также со скоплением примесей, окружающих дисло кацию. Для выявления пятен травления применяются различные методы, зависящи1 от природы металла и требующие особенно тщательной подготовки поверхности микрошлифа, исключающей механическое воздействие. По расположению пятен травления можно определить особенности тонкого строения кристалла — размеры блоков и степень их дезориентации. По числу пятен можно в ряде случаев вычислить плотность дислокаций В многофазных сплавах с помощью микроанализа можно установить и только количество, форму и размеры включений отдельных фаз, но и. их взашмное р1ас-пределение.  [c.130]

Как известно, несовершенство упорядоченного расположения атомов в поликристаллических металлах и минералах оказывает влияние на скорость и поглощение акустических волн в этих материалах. Поскольку многие породы состоят из зерен, которые имеют очевидную кристаллическую структуру или, по крайней мере, химическое строение которых предполагает упорядоченность атомов, можно ожидать, что такие же эффект могут проявляться и при распространении сейсмических волн. Полный обзор исследования по этому вопросу и обсуждение наиболее важных идей было дано Мэйсоном (1976 г.). Главная идея заключается в том, что напряжения могут изменять положение дефектов в кристаллической решетке. Это изменяет связь деформации с напряжением в среде, увеличивая значения упругих модулей и добавляя к ним мнимую часть. Чтобы изменить положение дефекта, требуются как тепловая энергия, так и механическое напряжение. Тепловая энергия затрачивается на преодоление энергетического барьера, который смещается под воздействием напряжений. Согласно Мэйсону дефектом, который наиболее сильно влияет на скорость и поглощение волн, является дислокация, представляющая линейную область нарушенного порядка, удерживаемая на обоих концах некоторыми дефектными атомами. В одном слу тае сейсмические волны заставляют дислокацию колебаться подобно растянутой струне, излучая энергию при взаимодействии с тепловыми фоно-иами. Это явление обусловливает широкий максимум поглощения в мегагерцовом диапазоне частот. Более вероятно, что дислокации пересекают энергетический барьер и только частично находятся в области мини-чума потенциальной энергии. Каждая дислокация может содержать некоторое число узлов, при этом движение дислокации происходит в том случае, когда все узлы переходят через потенциальный барьер в соответствии с приложенным напряжением, Этот механизм ведет к независимости Q от частоты. Оба механизма дают значения Q, находящиеся в хорошем согласии с экспериментами на гранитах формации Уистерли и других породах, если использовать некоторые правдоподобные предположения о размере и плотности дислокаций. Результаты более поздних экспериментов [99] не удалось объяснить движением дислокаций в твердой фазе пород. В связи с этим была развита модель, базирующаяся на теории Герца для контактируюш,их сфер, в которой учитывается движение дислокаций на поверхности трещин. Искажения материала, наблюдаемые при деформациях, достигающих 10-, могут быть Объяснены наличием дислокаций, отрывающихся от концевых дефектных атомов.  [c.141]

Рассматривая ползучесть как некоторый вид квазивязкого течения металла, мы должны допустить, что в каждый момент скорость ползучести при данном структурном состоянии определяется однозначно действующим напряжением и температурой. Структурное состояние — это термин, чуждый по существу механике, поэтому применение его в данном контексте должно быть пояснено более детально. Понятие о структурном состоянии связано с теми или иньгаи физическими методами фиксации этого состояния — металлографическими наблюдениями, рентгеноструктурным анализом, измерением электрической проводимости и т. д. Обычно физические методы дают лишь качественную характеристику структуры, выражающуюся, например, в словесном описании картины, наблюдаемой на микрофотографии шлифа. Иногда эта характеристика может быть выражена числом, но это число бывает затруднительно ввести в механические определяющие уравнения. В современной физической литературе, относящейся к описанию процессов пластической деформации и особенно ползучести, в качестве структурного параметра, характеризующего, например, степень упрочнения материала, принимается плотность дислокаций. Понятие плотности дислокаций нуждается в некотором пояснении. Линейная дислокация характеризуется совокупностью двух векторов — направленного вдоль оси дислокации и вектора Бюргерса. Можно заменить приближенно распределение большого числа близко расположенных дискретных дислокаций их непрерывным распределением и определить, таким образом, плотность дислокаций, которая представляет собою тензор. Экспериментальных методов для измерения тензора плотности дислокаций не существует. Однако некоторую относительную оценку можно получить, например, путем подсчета так называемых ямок травления. Когда линия дислокации выходит на поверхность, в окрестности точек выхода имеется концентрация напряжений. При травлении реактивами поверхности кристалла окрестность точки выхода дислокаций растравливается более интенсивно, около этой точки образуется ямка. Таким образом, определяется некоторая скалярная мера плотности дислокаций, которая вводится в определяюпще уравнения как структурный параметр. Условность такого приема очевидна.  [c.619]

Диффузия в твердых телах происходит при наличии в них ие--совершенств или дефектов. Точечные дефекты или дефекты решетки определяют объемную диффузию. Линейные и поверхностные дефекты, включающие границы зерен, дислокации, междуфаз-ные границы, внешние поверхности кристалла и т. д., вызывают - короткозамкнутую и поверхностную диффузию. При возникновении на поверхности металла пористой оксидной пленки диффузия протекает главным образом через поры в газовой фазе.  [c.50]

Хьюз и Резерфорд [38], а также Резерфорд [70], исследуя характеристики микродеформации для оценки параметров пластической деформации при растяжении системы медь—вольфрам, ус-тановцли, что пределы микротекучести и текучести линейно зависят от объемной доли упрочнителя — вольфрамовой проволоки (рис. 15). Кроме того, было показано, что значения предела текучести и сопротивления движению дислокаций увеличиваются с ростом предварительной деформации и качественно согласуются с дислокационной моделью для медной матрицы [38]. Исследование микродеформаций в сочетании с трансмиссионной электронной микроскопией является особенно ценным, поскольку таким способом может быть получена информация о роли поверхности раздела как барьера для движения дислокаций либо как источника или стока дислокаций.  [c.247]


Снижение микротвердости, определенное по увеличению размера отпечатка накола поверхности армко-жёлеза под тонким слоем электролита в условиях анодной поляризации внешним током, оказалось пропорциональным логарифму плотности анодного тока, что соответствует теоретической линейной зависимости отрицательного упрочнения от перенапряжения анодной реакции растворения металла в стационарном состоянии с нулевым значением потока дислокаций — см. ниже формулу (217).  [c.128]

Это объясняется тем, что на стадии легкого скольжения основной вклад в деформацию дают дислокации, вышедшие на поверхность металла. На стадии деформационного упрочнения деформация осуществляется путем микросдвигов по линиям скольжения с образованием развитого микрорельефа на деформированной поверхности. Происходит почти линейное увеличение плотности дислокаций от степени пластической деформации с интенсивным возрастанием механохимического эффекта, что приводит к ускорению анодного растворения металла. Поскольку пластическая деформация металла при комнатной температуре осуш,ествляется путем микросдвигов, то нет различия в течение локальных процессов при растяжении, сжатии, кручении, т.е. при различных видах деформации.  [c.17]

Под действием сдвигающих напряжений дислокация перемещается вдоль плоскости скольжения. Для перемещения дислокации требуется меньшее касательное напряжение, так как атомы находятся в состоянии неустойчивого равновесия в решетке. Винтовая дислокация заключается в том, что часть кристаллической решетки на некотором протяжении оказывается сдвинутой на один параметр решетки относительно другой. При винтовой дислокации лишней атомной плоскости нет. Дислокации зарождаются при кристаллизации металлов и их сплавов, а также образуются в процессе пластической деформации. В процессе пластической деформации дислокации могут образоваться по механизму Франка— Рида. Сущность механизма образования дислокаций Франка — Рида заключается в следующем. Линейная дислокация, зародившаяся при кристаллизации, под действием касательных напряжений выгибается и принимает форму полуокружности. Этому моменту соответствует наибольшее значение касательных напряжений. При дальнейшем выгибании дислокация принимает форму замкнутой кривой (окружности), внутри которой остается исходная дислокационная линия. Наружная дислокация разрастается до внешней поверхности кристалла, а внутренняя вновь выгибается, порождая новую дислокацию. Препятствием движению дислокаций являются границы блоков и кристаллов. При пластической деформации кристаллы дробятся, увеличивается число блоков и протяженность их границ. Скопление дислокаций затрудняет зарождение новых дислокаций, так как для их генерирования теперь потребуются большие касательные напряжения. Усилие, необходимое для осуществления пластической деформации, возрастает с увеличени-  [c.256]

Характерная кинетическая кривая роста усов сапфира при 1350° С приведена на рис. 156. Можно выделить три стадии начальную —с возрастающей скоростью, линейную— с постоянной скоростью роста и стадию затухания. Начальная стадия характеризуется экспоненциальной зависимостью длины кристалла от времени роста. Это следует из модели Сирса. В первые минуты роста длина нитевидного кристалла h меньше Я. — длины диффузионного блуждания адсорбированного атома или молекулы по боковой- поверхности растущего кристалла. Тогда все ударяющиеся и адсорбирующиеся на. этой поверхности атомы успевают достичь вершины кристалла и встроиться в решетку на ступеньке винтовой дислокации.  [c.354]

Б.И. Смирнов с сотрудниками [35-37] обнаружили, что при снятии слоя с поверхности кристаллов LiF, деформированных при 20 и -196°С, наблюдается эффект понижения плотности дислокаций (рис. 1, д). При этом в процессе удаления поверхностного слоя плотность дислокаций сначала резко падает примерно на 30%, а затем остается практически неизменной. Сравнение кривых сжатия обычных деформированных образцов и тех, у которых полировкой были сняты слои толщиной 7 и 14 мкм, показало, что значения напряжений, при которых начинается заметное пластическое течение образца, снижаются, а выход на участок линейного упрочнешя в этом случае происходит при более высокой деформации, чем у неполированных образцов (рис. 1, б).  [c.12]

Несколько иная ситуация реализуется в случае деформации кристалла ниже температурного порога хрупкости, где консервативное скольжение при малых и средних напряжениях фактически запрещено в силу наличия больших барьеров Пайерлса. В этом случае, даже если в выращенном кристалле и имеется некоторый исходный спектр гетерогенных источников (относительно слабый без проведения специальных термообработок и являющийся функцией условий роста кристалла [595] и значительно более резкий при проведении специальных режимов отжига), процесс непосредственно призматического вьщавливания дислокаций (т.е. действие процесса неконсервативного их движения от имеющихся включений) подавлен в силу действия ряда факторов. К ним относятся а) высокая величина напряжений Пайерлса, требующая для их преодоления обычным способом консервативного движения высоких напряжений порядка нескольких сотен кгс/мм б) резкое падение напряжений на включениях в зависимости от текущей координаты удаления петли от включения a ljr (рис. 129) в) действие сил линейного натяжения, которые стремятся вернуть петлю на межфазную поверхность раздела. Это приводит к тому, что если дислокационная петля и зарождается, то она отходит на весьма малое расстояние от поверхности включения порядка 1,5—2 г (см. рис. 29) и останавливается в силу того, что напряжение по мере отхода ее от включения резко умень--шается и становится ниже требуемой для ее скольжения величины. В этом случае дальнейшее увеличение размера петли, т.е. ее перемещение, возможно только за счет неконсервативного движения петли, т.е. переползания (см. рис. 125, 126). И в этом плане анализ экспериментальных данных, представленных выше, а также проведенные расчетные оценки показывают, 244  [c.244]

В самом деле, границы (например, границы разориентации) далеко не всегда являются источниками дальнодействующих напря-я ений. Потому их нельзя ввести в предмет теории через особен-. ность в решениях для напряжений. Более того, границы разориентации — это органический элемент структуры частичной дисклинации, а границы сдвига — частичной дислокации. Такие границы остаются в кристалле и при отсутствии дислокаций или дисклинаций, например, из-за выхода на наружную поверхность или образования полностью замкнутой границы S. Если поверхность S не имеет края, то нет и линейного деферта, ее окаймляющего. Потому даже  [c.169]

Расчеты [78, 79] показали, что атомные смеш ения на поверхности кристаллитов приводят только к снижению интенсивности дифракционных отражений, но не влияют на их форму, nin-рину и положение. Влияние дальнодействуюш его поля упругих напряжений на параметры дифракционного отражения моделировалось изменением линейной плотности дислокации р границ раздела. Увеличение плотности дислокации от О до 0,1 и 1,0 нм  [c.146]

В совершенной структуре при движении полностью когерентной поверхности раздела в нормальном к ее поверхности направлении возникают все те проблемы, с которыми приходится иметь дело при росте совершенного кристалла из пара. Предположим, что небольшая часть поверхности раздела продвинулась вперед на расстояние, равное одному периоду решетки. Ступенька на поверхности раздела, окружающая этот выдвинувшийся вперед участок, будет обладать повышенной по сравнению с остальной поверхностью раздела энергией, и возникновение этой энергии препятствует росту. Формально ступеньку можно рассматривать как дислокационную линию особого вида (дислокация превращения или двойникующая дислокация) с вектором Бюргерса,. равным произведению высоты ступеньки на вектор смещения деформации с инвариантной плоскостью при превращении решетки (фиг. 22). Энергия ступеньки соответствует линейному натяжению дислокации, и в отсутствие достаточно высоких напряжений ступенька будет сокращаться, возвращая поверхность раздела к ее исходному положению. Напряжения могут создаваться химической движущей силой или извне приложенными напряжениями при фиксированном эффективном напряжении ступенька будет развиваться только в том случае, если она имеет достаточно малую кривизну. Таким образом, в данном случае существует механизм двумерного зарождения, и, как только площадь уступа достигает размера, за которым может начаться его самопроизвольное развитие, граница раздела продвигается вперед на высоту уступа. Следует отметить, что, хотя ступенька перемещается по плоскости  [c.323]


Смотреть страницы где упоминается термин Дислокации линейные поверхности : [c.42]    [c.231]    [c.30]    [c.27]    [c.55]    [c.108]    [c.154]    [c.133]    [c.31]    [c.31]    [c.597]    [c.56]    [c.106]    [c.331]   
Механика сплошной среды. Т.2 (1970) -- [ c.542 ]



ПОИСК



Дислокации линейные

Дислокация



© 2025 Mash-xxl.info Реклама на сайте