Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Растяжение режимы нагружения

С целью более полной проверки модели был выполнен расчетный анализ долговечности одноосных образцов при двух режимах нагружения с различными скоростями деформирования на стадиях растяжения и сжатия. В первом режиме скорости деформирования i = lO-s с-, Il2 = с во втором— gi = 10- с-, 2 =10-2 с в обоих режимах нагружения размах деформаций Де = 2%. Результаты расчетов показали, что с увеличением по модулю скорости деформирования 2 (сжимающая часть цикла) при неизменной i (растягивающая часть цикла) долговечность до зарождения межзеренного разрушения уменьшается (рис. 3.12). Такой эффект связан с уменьшением залечивания пор при сжатии (с увеличением Ibl темп уменьшения радиуса пор падает), что достаточно хорошо согласуется с имеющимися экспериментальными данными [240, 273].  [c.185]


Пример 5. Определить допускаемое напряжение растяжения для цилиндрической колонны пресса в зоне перехода диаметров di = 60 мм в = 70 мм при эффективном коэффициенте концентрации напряжений для симметричного цикла Кд =2,3. Напряжение изменяется во времени по асимметричному циклу (г = = +0,2) в соответствии с тяжелым режимом нагружения (см. рис. 1.8, в). Расчетный срок службы L= 15 лет, коэффициент использования в течение года Кр =0,75, коэффициент использования в течение суток /С =0,66, частота на-  [c.20]

Круг Мора, соответствующий напряжениям сг и Од и заключающий внутри себя два других круга, называется главным. Построим серию главных кругов Мора, соответствующих некоторой серии экспериментов с доведением испытания до разрушения, и на одном чертеже построим их огибающую (рис. 8.16). Эта огибающая пересечет ось Оа в некоторой точке А, которая соответствует разрушению при условии = 02 = аз > О, т. е. разрушению при всестороннем растяжении. Эта точка расположена на конечном расстоянии от начала координат, так как прочность материала при таком режиме нагружения должна быть ограниченной. Правда, этот эксперимент не реализуем в натуре или реализуем лишь мысленно. Но все эксперименты, которым соответствуют круги Мора, расположенные слева от этой точки, могут быть в той или иной мере реализуемы, по крайней мере, в режиме плоского напряженного состояния. Так как на построение упомянутой огибающей не влияет напряжение Og, то исключим его из рассмотрения. Это является недостатком критерия прочности Мора. Теперь выскажем гипотезу о том, что все напряженные состояния, которым соответствуют точки плоскости Ота, лежащие внутри огибающей главных кругов Мора, построенных для состояния разрушения, безопасные. Внутренней областью огибающей кругов Мора считаем ту, которая содержит начало координат. Построить полностью огибающую кругов Мора нет возможности из-за необходимости выполнить большое число экспериментов, однако можно построить аппроксимацию этой огибающей на базе двух экспериментов следующим образом.  [c.168]

Напряженное состояние материала у вершины усталостной трещины даже в случае внешнего одноосного растяжения при раскрытии берегов усталостной трещины перед ее вершиной является объемным. Переход к внешнему воздействию по нескольким осям не нарушает объемности напряженного состояния материала у вершины трещины и не изменяет условия раскрытия ее берегов, если в процессе распространения усталостной трещины реализуются механизмы роста трещины, подобные механизмам разрушения при одноосном внешнем циклическом растяжении. Поэтому при различном сочетании уровня действующих нагрузок по нескольким осям всегда имеется некоторая область их значений, в которой развитие разрушения качественно аналогично ситуации с одноосным растяжением — на вершине распространяющейся усталостной трещины осуществляются упорядоченные переходы к возрастающим масштабным уровням разрушения, каждому из которых отвечает определенный механизм роста трещины. Это представление отвечает регулярному нагружению материала без эффекта влияния смены режимов нагружения на рост трещин.  [c.308]


Подробные исследования переходных режимов нагружения на рост трещины при однопараметрической смене соотношения главных напряжений были выполнены на нержавеющей стали 304 с пределом текучести 284 и 333 МПа [40]. На крестообразных образцах толщиной 5 мм было продемонстрировано, что переходы к симметричному сжатию от одноосного растяжения или симметричного растяжения сопровождаются резким ускорением роста трещины с последующим снижением скорости по мере роста трещины. При этом в случае роста трещины при одноосном нагружении ее скорость на значительной длине остается неизменной. Причем при снижении уровня первого главного напряжения со 196 к 163 МПа различия в СРТ нет при одноосном нагружении и симметричном растяжении-сжатии. Этот факт объяснен влиянием пластических свойств материала, как это было указано в главе 6. При снижении величины ai/Oo,2 = влияние второй компоненты нагружения на рост трещины снижается.  [c.410]

Универсальная машина для испытания на усталость при различных видах напряженного состояния — изгибе, кручении, растяжении и сжатии, а также сложно-напряженном состоянии при совместном действии изгиба и кручения содержит два направленных вибратора, угол между которыми можно изменять от О до 90°. Разработана машина, позволяющая проводить испытания образцов или тонкостенных элементов конструкций при программном нагружении в условиях чередования статической ползучести и циклического нагружения [76]. Для исследования влияния переменных циклических напряжений на процесс ползучести разработано устройство [120], позволяющее регистрировать деформацию ползучести в указанном режиме нагружения. Установка позволяет проводить испытания плоских образцов на усталость при знакопеременном изгибе и кручении.  [c.176]

Рассмотрены вопросы экспериментального исследования твердости, характеристик упругости, кратковременной и длительной прочности при растяжении, сжатии, изгибе. Описаны системы обеспечения силовых и температурных режимов нагружения, даны примеры их расчетов. Особое внимание уделено обеспечению точности измерения температур, нагрузок и деформаций при определении механических характеристик материалов в условиях вакуума, инертной и окислительной сред.  [c.2]

Установлена (рис, 13, стр. 73) связь между анодным током растворения, уменьшением потенциала и потерей массы металла для характерных участков кривой растяжения в области упругой (точка 2) и пластической (точки 3, 4, 5) деформаций. Это подтверждает возможность прогнозирования скорости коррозии деформированного металла по данным экспрессного определения величины механохимического эффекта в динамическом режиме нагружения.  [c.72]

Для сопоставления механохимического поведения стали при динамическом и статическом режимах нагружения изучали влияние напряжений на гальваностатические поляризационные характеристики стали Св-08 в 7-н. растворе серной кислоты при деформации одноосным растяжением. Кривые снимали последовательно при напряжениях, отвечающих всем характерным участкам кривой деформационного упрочнения. Анализ показал, что анодный и катодный процессы облегчаются в области упругой деформации, несколько затрудняются в области площадки, текучести и затем вплоть до максимального деформационного упрочнения вновь облегчаются. В области динамического возврата  [c.76]

Второй и последующий циклы начинаются с нагрева и, следовательно, с уменьшения напряжений растяжения. Поскольку при ползучести общая деформация развивается в основном за счет деформации границ зерен, а пластическая деформация течения— за счет деформации самих зерен, то при растяжении и сжатии в обеих частях цикла (в четных и нечетных полуциклах) интенсивно исчерпываются пластические свойства материала как кратковременные, так и длительные. Это приводит к снижению сопротивления термоусталости в термоциклах с выдержками при максимальной температуре по сравнению с сопротивлением в режиме нагружения без выдержки.  [c.70]


Схема приложения нагрузок. При анализе накапливания усталостных повреждений, а следовательно, и закономерностей образования нераспространяющихся усталостных трещин кроме параметров режима нагружения необходимо учитывать также схему приложения нагрузки. На практике обычно реализуются смешанные нагружения, специфические условия работы деталей (срез, смятие и др.). Однако возникновение в этих условиях нераспространяющихся усталостных трещин практически не исследовано. Подавляющее число исследований этих трещин выполнено при осуществлении основных простых схем нагружения, таких, как одноосное растяжение-сжатие, изгиб и кручение.  [c.81]

Осевое нагружение или изгиб характеризуются тем, что в обоих случаях поверхностные слои детали испытывают качественно одинаковые циклы напряжений (растяжение-сжатие). Отличие состоит только в том, что при изгибе присутствует в зависимости от размера детали более или менее заметный градиент напряжений по ее сечению. Однако коэффициенты, связанные с появлением нераспространяющихся усталостных трещин и микротрещин при обоих режимах нагружения, практически можно считать одинаковыми. Для усталостных трещин, торможение которых является результатом специфики распределения напряжений у острых концентраторов напряжений, эффект градиента, связанного со схемой приложения нагрузки (из-  [c.81]

Нестационарность нагружения (наличие перегрузок, недогрузок и других отклонений от стабильного режима) может существенно влиять на закономерности сопротивления усталости, особенно при наличии концентраторов напряжений. Простейшие случаи нестационарности, в результате которых возможно образование нераспространяющихся усталостных трещин, — это переход с высокого уровня напряжений на более низкий уровень и присутствие в режиме нагружения одиночных циклов растяжения более высокого уровня. В обоих случаях действуют механизмы упрочнения материала у верщины трещины и образования остаточных напряжений сжатия. Эти процессы при определенной их интенсивности приводят к задержке роста трещины. При этом эффективность торможения зависит от разницы между напряжениями на высокой и низкой ступенях нагружения или от уровня перегрузки, а также от размера трещины в момент изменения режима.  [c.95]

Для испытаний сильфонных компенсаторов использован специальный стенд, позволяющий реализовать необходимый режим нагружения компенсатора в условиях циклического осевого растяжения-сжатия с заданным размахом перемещения. Испытания металлорукавов проводили в условиях повторно-переменного нагружения (изгиба с вращением) при заданном радиусе кривизны продольной оси. Нагрев осуществляли в печи частота нагружения 10 и 56 мин" при постоянной температуре. Система программирования режима нагружения обеспечивала различное время выдержки в разные периоды режима нагружения.  [c.166]

Образование петель пластического гистерезиса возможно только при наличии так называемой деформационной анизотропии материала, частным проявлением которой при линейном напряженном состоянии является эффект Баушингера пределы пропорциональности или текучести периодически изменяются с изменением направления пластического деформирования, т. е. с переходом от пластического растяжения к сжатию и наоборот. Так на диаграмме рис. 1.7 ордината точки D, отвечающей пределу пропорциональности при сжатии, следующем за растяжением, меньше ординаты точки А, соответствующей началу разгрузки. Ордината точки G, отвечающей пределу пропорциональности при дальнейшем растяжении, не совпадает с ординатой точки Е. Существенно, что в гипотетическом случае изотропного упрочнения, при котором ординаты точек А к D должны совпадать, материал приспособился бы к любому стационарному режиму нагружения с заданным  [c.15]

В случае попеременного растяжения и сжатия величина ej равна арифметической сумме вязкопластических деформаций, накапливающихся каждый раз сначала в прямом, а затем в обратном направлениях. Так как ползучесть сталей при сжатии протекает примерно с той же скоростью, что и при растяжении, то согласно (5.22) скорость повреждений при сжатии должна быть примерно той же, что и при растяжении. Это противоречит, однако, результатам опытов (см. п. 4.1), согласно которым накопление повреждений при сжатии протекает очень медленно по сравнению с растяжением или даже совсем не имеет места. Таким образом, при расчете повреждений при знакопеременных режимах нагружения в формулу (5.21) следует вносить только приращения деформаций удлинения.  [c.202]

Таким образом, для указанных режимов нагружения существенным оказывается наличие единой диаграммы, предполагающей конечную связь между соответствующими компонентами напряжений и деформаций как для исходного, так и циклического деформирования. Экспериментально показано, что при различных видах однопараметрических пропорциональных нагружений, охватывающих достаточно контрастные случаи напряженных состояний (растяжение—сжатие, сдвиг—сдвиг), подтверждается наличие единой кривой статического и циклического деформирования при интерпретации в интенсивностях напряжений и деформаций [3, 4]. Независимость в указанных испытаниях диаграмм деформирования от вида напряженного состояния дает основание предположить возможность использования ее и в общем случае неоднородного напряженного состояния.  [c.54]

Использование для характеристик сопротивления деформированию в исходном нагружении интенсивностей напряжений и деформаций (о — б , Т — У ) позволяет и в случае рассматриваемого сложного режима нагружения получить единую зависимость между напряжениями и деформациями как для режима растяжение-сдвиг, так и режима сдвиг—растяжение (рис. 3.4, а, б).  [c.57]


В условиях жесткого режима нагружения влияние временных эффектов в связи с включением выдержки в циклы температуры и нагрузки проявляется в чистом виде (рис. 2.7). Деформация растяжения соответствовала высоким температурам цикла нагрева (рис.  [c.52]

Наибольшие повреждения за счет выдержки в полуцикле растяжения при изотермических (точки 15) и неизотермических (точки 16) испытаниях соответствуют кривой III. Характер кривых II и III показывает, что для рассматриваемого материала может быть установлено пороговое значение длительности выдержки примерно 20 мин, после которого длительность выдержки не влияет на сопротивление малоцикловой усталости. Кривая IV отражает результаты испытаний, когда выдержка осуществляется и при сжатии и при растяжении в цикле одновременно. Положение кривой III по отношению к кривой IV говорит об эффекте залечивания , свойственного режиму нагружения с выдержкой в полуциклах сжатия.  [c.56]

Для количественной оценки влияния неизотермичности нагружения на процесс накопления малоцикловых и длительных статических, квазистатических и усталостных повреждений требуются экспериментальные исследования. Необходимы прежде всего испытания на контрастных (мягкое и жесткое) режимах нагружения и нагрева, сопровождающихся синфазным и противофазным нагревом-охлаждением образца (рис. 2.46, а...г). Кроме того, требуются испытания для определения располагаемой пластичности материала. Такие данные можно получить при монотонном статическом растяжении образца с варьируемой в широких пределах скоростью деформирования в условиях заданного температурного цикла (рис. 2.46, д).  [c.107]

После разрушения волокон типа С скачкообразно меняется напряженно-деформированное состояние гибридного монослоя. При растяжении в направлении армирования эти изменения качественно зависят от режима нагружения. В случае простого механического нагружения в момент разрушения волокон типа С среднее  [c.298]

Как показывают экспериментальные данные (см. рис. 1.2.4), при наличии в цикле выдержек наблюдается весьма существенное изменение напряжений и деформаций, причем накопленная деформация может превышать заданный размах в 2—3 раза и более. Расчет длительной малоцикловой прочности в соответствии с кинетическими деформационными критериями в форме уравнений (1.2.8), (1.2.9) дает для рассматриваемого случая нагружения хорошее соответствие расчетных и экспериментальных данных (таблица 1.2.1). На рис. 1.2.2, б показаны величины накопленного повреждения для режимов нагружения с выдержками при растяжении и сжатии, а также только при сжатии (точки 4). Характерно, что новые данные укладываются в поле рассеяния точек, соответствующих испытаниям, проведенным в условиях мягкого и жесткого нагружений без выдержек и с выдержками при постоянном напряжении (точки 2). Для расчета величины повреждения использована зависимость распо.пагаемой пластичности от времени, где ( ) — пластическая деформация при статическом разры-  [c.27]

Для сопоставления механохимического поведения стали при динамическом и статическом режимах нагружения изучали влияние напряжений на гальваностатические поляризационные характеристики стали Св-08 в 7 н. H2SO4 при деформации одноосным растяжением. Кривые снимали последовательно при напряжениях, отвечающих всем характерным участкам кривой деформа-  [c.78]

Исследования были проведены на аустенитной нержавеющей стали Х18Н10Т, склонной к интенсивному деформационному старению. Трубчатые образцы диаметром 21 мм и толщиной стенки 1,5 мм испытывали при растяжении-сжатии (частота нагружения приблизительно 1 цикл/мин) на установке типа УМЭ-10 т, снабженной вакуумной системой и средствами исследования микроструктуры на поверхности образца [1]. Указанная установка оборудована также системой управления силовозбудителем для получения двухчастотного режима нагружения (частота около 20 цикл/мин) и автоматическим устройством для программного нагружения с временными выдержками на экстремальных уровнях нагрузки в полуциклах нагружения. Испытания были проведены при моногар-моническом малоцикловом нагружении, при нагружении с выдержкой 5 мин при максимальной (по абсолютной величине) нагрузке в полуциклах, а также с наложением нагрузки второй частоты в процессе выдержки при температурах 450° С и 650° С [2]. При исследованиях структуры использованы методы световой (для определения числа, размера и характера расположения частиц), ионной и просвечивающей электронной микроскопии (для определения характера распределения карбидов и легирующих элементов), электронной микроскопии со снятием реплик с зон изломов, а также методы рентгеноструктурного (для определения степени искаженности кристаллической решетки в зависимости от уровня нагрузки) и рентгеноспектрального анализа. Образцы исследовались в зонах разрушения.  [c.67]

В описываемой ниже работе [108] исследовали структуру, распределение примесей, величину микроискажений решетки матрицы, приводяш,их к разрушению стали Х18Н10Т в области рабочих температур при циклическом нагружении. Полые цилиндрические образцы диаметром 20 мм и с толщиной стенки 1,5 мм испытывали на малоцикловую усталость при 650° С в вакууме 10 мм рт. ст. знакопеременным нагружением по схеме растяжение — сжатие при симметричной форме цикла. Режимы нагружения I — Оа = = 34,4 кгс/мм и Л р = 6 циклов П — = 28,3 кгс/мм м = 275 циклов III — Оа = 24,0 кгс/мм и Л р = 3286 циклов.  [c.203]

За исключением частных случаев (например, продольного соударения тонких стержней), воздействие импульсной нагрузки создает в материале напряженное состояние, характеризующееся высоким уровнем средних напряжений сжатия или растяжения (последнее во взаимодействующих волнах разгрузки). Можно пренебречь сопротивлением материала сдвигу при высоких давлениях и принять систему напряжений эквивалентной гидростатическому сжатию, что допускает решение ряда задач (например, задачи расчета начальной стадии высокоскоростного взаимодействия твердых тел [252—255]) методами гидродинамики. Для таких расчетов достаточно использовать уравнение состояния вида F p, гу, Т)=0, однозначно связывающее среднее напряжение (давление), объемную деформацию ev и температуру Т. Это уравнение пригодно для описания поведен ия жеталлических твгатерй лев, - ъемиая- -деформация-которых является упругой и, следовательно, не зависит от режима нагружения и его истории.  [c.10]

Инерционный принцип силовозбуждения, примененный в указанной выше машине для испытаний при неоднородном напряженном состоянии, был использован также для нагружения образцов осевыми усилиями (растяжение—сжатие) [ 5]. Так как при испытаниях на растяжение—сжатие необходимо воспроизведение значительных усилий (в рассматриваемой установке до 4000 дан), скорость вращения неуравновешенных масс была выбрана значительной — 2500—3600 об1мин для основной гармоники и 6100—7500 об1мин для высокочастотной (мг i = 2 1 и 3 1). При этом высокочастотная составляющая оказалась в резонансной области, так как частота собственных колебаний упругой системы машины составляла 6050—6100 циклов в минуту. Такое явление неблагоприятно сказывается на стабильности режима нагружения образца как в ироцеесе испытаний, так и в особенности при переходе через резонанс. В связи с этим большое (внимание авторы вынуждены бьши уделить вопросам исследования динамических характеристик машины и стабилизации амплитуды напряжений.  [c.128]


Одним из необходимых условий при усталостных испытаниях на растяжение — сжатие является нербходимость выдерживать однородность напряженного состояния, т. е. не допускать йояв-ления переменных и постоянных изгибающих напряжений. Особое значение это имеет при бигармонических испытаниях, характеризующихся, как указывалось выше, повышенными требованиями к точности задания и поддержания необходимого режима нагружения.  [c.139]

Эксплуатационные режимы нагружения элементов конструкций имеют, как правило, более сложный характер, чем распространенные в практике экспериментов синусоидальные или треугольные формы циклов нагружения, хотя именно они являются наиболее часто используемыми при получении основных характеристик циклических свойств материалов и закономерностей их изменения в процессе деформирования. Синусоидальный или треугольный законы изменения напряжений и деформаций использовались в качестве основных и при экспериментальном изучении кинетики циклической и односторонне накапливаемой пласти ческих деформаций и их описании соответствующими зависимостями, рассмотренными в предыдущих главах. В ряде случаев условия эксплуатационного нагружения представляется возможным схематизировать такими упрощенными режимами. Однако в большинстве случаев для исследования поведения материала с учетом реальных условий оказывается необходимым рассмотрение и воспроизведение на экспериментальном оборудовании таких более сложных режимов, как двух-и многоступенчатое циклическое нагружение с различным чередованием уровней амплитуд напряжений и деформаций, нагружение трапецеидальными циклами с выдержками различной длительности на экстремумах нагрузки в полуциклах растяжения и (или) сжатия, а также в точках полного снятия нагрузки, двухчастотное и полигармо-ническое нагружение, нагружение со случайным чередованием амплитуд напряжений, соответствующим зарегистрированными в эксплуатации условиями. Особенно необходимым воспроизведение и исследование таких режимов становится в области повышенных и высоких температур, когда на характер и степень проявления температурно-временных эффектов, а следовательно, и на кинетику деформаций, существенное влияние оказывают факторы длительности, формы цикла и уровней напряжений или деформаций в процессе нагружения. Ниже приведены исследования закономерностей развития деформаций для ряда упомянутых режимов нагружения, позволяющие проанализировать применимость тех или иных уравнений кривых малоциклового деформирования и применение параметров этих уравнений при изменении режимов.  [c.64]

В условиях повышенных температур фактор наличия выдержки на экстремумах нагрузки оказывает свое влияние на параметры процесса деформирования, причем его степень зависит от типа материала, уровня температур, длительности выдержек и уровня приложенных напряжений. На рис. 4.8 показаны экспериментальные данные по кинетике циклической 6 ) и односторонне накопленной пластических деформаций для стали Х18Н10Т при 450° С и различных формах цикла мягкого режима нагружения, включая простое нагружение треугольной формой цикла и трапецеидальной с выдержками как в полуциклах растяжения и сжатия, так и с односторонними выдержками в каждом из этих полуциклов, причем время выдержки во всех случаях 5 мин.  [c.74]

Другим важным обстоятельством является то, что во многих практических случаях в конструкциях за пределом упругости оказываются только зоны концентрации напряжений, в то время как основной материал нагружается упруго. В силу кинематической связанности с основным материалом, материал в зонах концентрации работает в условиях, близких к жесткому режиму нагружения, т. е. без значительного накопления односторонних деформаций. При этом величина деформаций, определяющая малоцикловую прочность конструкции (как это показано в гл. 1), оказывается не такой чувствительной к характеристикам сопротивления деформированию, как это имеет место для гладкого образца при заданной нагрузке. Например, при всестороннем растяжении полосы с отверстием ( о = 2) при номинальных напряжениях Он == 0,8 От эквидистантное смещение пластического участка диаграммы деформирования вниз на 40% по напряжениям вызывает увеличение деформаций всего на 30%. Указанные обстоятельства следует учитывать при формулировке уравнений состояния, имея в виду их практическое использование при расчете малоцик.ловой прочности.  [c.128]

Экспериментально определенные параметры для сталей Х18Н10Т и Х18Н9 закладывались в расчет для проведения численного эксперимента по алгоритмам и программам, имитирующим эксперимент по растяжению—сжатию цилиндрического трубчатого образца при различных температурно-скоростных режимах нагружения [45, 46[. На рис. 6.5—6.10 приводятся основные результаты по сопоставлению численных и натурных экспериментов. Входные параметры численного и натурного экспериментов — законы изменения Т t), е (t) — в случае жесткого нагружения, Т (t), а (t) — в случае мягкого нагружения, а сравниваемые параметры а (1) — в случае жесткого нагружения и е (t) — в случае мягкого нагружения.  [c.158]

При оценке повреждений при длительном малоцикловом нагружении в ряде случаев наблюдается большее повреждающее действие выдержек при растяжении, чем при растяжении-сжатии или только сжатии. В таких случаях для каждой рассматриваемой стали пли сплава при изучении закономерностей накопления длительных циклических повреждений необходимо определить влияние знака напряжений при вьйержке в исследуемом интервале температур. Оценка повреждений для материалов и режимов нагружений с большим повреждающим эффектом выдержки того или иного знака должна производиться с использованием соответствующей базовой кривой усталости, отражающей снижение долговечности при наличии односторонней выдержки. Иначе возможна ошибка (расхождение в 5 раз и более) при оценке накопленного усталостного повреждения.  [c.103]

В стендах с рычажной системой нагружение создается с помощью эксцентрикового механизма (рис. З.Г8, б) [,10.9]. Образец 3 крепят с помощью гайки 5 верхним концом в силовой раме, состоящей из динамометрических колонок 2 и 6, -траверсы 4. Нижний конец образца через подвижный захват 9 соедпнен с рычагом 1, который совершает угловые перемещения с помощью эксцентрика 10, вращающегося от электродвигателя. Циклический нагрев образца производится от трансформатора 7. Циклические напряжения измеряются тензодатчиками 8j нак--леенными на динамометрические колонки, а упругопластические деформации г— деформометром (рис. S.liS, а). Силовую цепь (рис. 3.18, б) нагружения образца 3, в которую входит динамометр 5, подвижная траверса 7 и термоэлемент 9, крепят на раме, состоящей из массивных траверс 4, 10 и колонок 2, 6. Циклическая нагрузка в образце возбуждается от термоэлемента, нагреваемого пропусканием тока от мощного трансформатора 8 и охлаждаемого интенсивной прокачкой воздуха. Эта схема обладает определенной гибкостью. Она позволяет наряду с мягкими и жесткими режимами малоциклового нагружения осуществлять различные сочетания циклического нагрева и циклического нагружения, в том числе и малоцикловые неизотермические испытания с варьированием статической нагрузки [29] в полуцикле сл атия (для термоусталостного режима нагружения) или в полу-дикле растяжения.  [c.148]

Электрогидравлнческий испытательный стенд [97] неизотермического малоциклового нагружения растяжения-сх<атия с ЭВМ обеспечивает управление режимом нагружения и нагрева, а также обработку получаемых данных. Стенд обладает высокой точностью поддерх<ания задаваемого режима испытаний возможностью осуществления с помощью ЭВМ корректировки программы нагружения и регистрации диаграмм деформирования с учетом параметров нагрева, дилатометрических составляющих деформаций и возникновения термических напряжений обеспечивает автоматический пересчет измеряемых поперечных деформаций образца в продольные.  [c.150]

В экспериментах на одноосное растяжение образца такого состояния в его рабочей части можно достичь только специальным образом, контролируя нагрузку (снижая действующее напряжение до нуля) на заключительной стадии деформирования. При других способах нагружения, а также при работе материала в реальных конструкциях, разрушение происходит при ненулевых напряжениях, и критическое значение поврежденности т/ зависит от действующих напряжений, физикомеханических характеристик материала и ряда других факторов. Экспериментальные исследования свидетельствуют, что в зависимости от свойств материала и режимов нагружения а>/ может принимать значения 0,2 < со/ < 0,8. Кроме того, материал может быть разрушен в упругой области после некоторой истории деформирования в пластической области, в результате которой была накоплена повреж-денность со < ш/.  [c.383]

Исследованные материалы и их механические свойства приведены в табл. 3 [35, 135—138, 148, 1601. Исследования проводились при мягком режиме нагружения при растяжении с частотой около 2 циклов в 1 мин на цилиндрических образцах с диаметром рабочей части 10 мм при комнатной и низких температурах с коэффициентом асимметрии цикла R = Omin/Oniax, изменявшимся в пределах от О до —1.  [c.35]

II тех же условиях полимер может при сжатии испытывать выиужденно-эластич. деформацию, а при растяжении — хрупкий разрыв. П. п. существенно зависит от режима нагружения (см. Прочности временная зависимость ш У с шалость материалов). Так как П. п. в любом деформационном состоянии определяется наиболее слабым участком структуры или опасным дефектом (трещиной, надрывом), то статистич. теория прочности применима и к полимерам.  [c.90]



Смотреть страницы где упоминается термин Растяжение режимы нагружения : [c.190]    [c.262]    [c.402]    [c.111]    [c.269]    [c.68]    [c.17]    [c.46]    [c.55]    [c.133]    [c.142]   
Методы статических испытаний армированных пластиков Издание 2 (1975) -- [ c.73 ]



ПОИСК



Режим нагружения



© 2025 Mash-xxl.info Реклама на сайте