Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластичность показатель

Из методов количественной оценки технологической прочности наибольшее распространение получил метод МВТУ им. Н. Э. Баумана, основанный на выше рассмотренной теории. Принципиальная сущность его заключается в деформировании испытуемого сварного шва, находящегося в т.и.х., с заданным темпом деформации вплоть до полного исчерпания пластичности. Показателем сопротивляемости образованию горячих трещин служит та максимальная скорость деформации, при которой трещина не возникает.  [c.482]


Пластичность. Показателями пластичности являются относительное удлинение и относительное сужение образца в момент разрыва.  [c.16]

Из приведенных данных следует, что в области (0,1—0,3) 0 у гафния наблюдаются свойственные многим металлам провалы пластичности. Показатель 3 = 1,40.  [c.116]

При температуре 250...300° С предел прочности б углеродистых и низколегированных сталей повышается со снижением относительного удлинения 5 и сужения показателей пластичности. Эту зону называют зоной синеломкости. Снижение пластических свойств также часто происходит при штамповке днищ в зоне температур 800...900° С. Эту зону называют зоной красноломкости. Данные зоны необходимо избегать при горячей штамповке днищ из сталей данных классов.  [c.10]

В соответствии с описанными выше процессами изменения строения наклепанного металла при его нагреве следует ожидать и соответствующего изменения свойств. По мере повышения температуры твердость сначала слегка снижается вследствие явлений возврата. После отжига при температуре, несколько превышающей температуру рекристаллизации, твердость резко падает и достигает исходного значения (значения твердости до наклепа). Эта температура и есть минимальная температура рекристаллизации, или порог рекристаллизации (рис. 69). Аналогично изменению твердости изменяются и другие показатели прочности (предел прочности, предел текучести). На рис. 69 показаны также изменения пластичности (б). Низкая температура нагрева и происходящий при ней возврат несколько повышают пластичность, но лишь рекристаллизация восстанавливает исходную (до наклепа) пластичность металла.  [c.88]

Увеличение содержания углерода в стали приводит к повышению прочности и понижению пластичности (рис. 148). Приводимые механические свойства относятся к горячекатаным изделиям без термической обработки, т. е. при структуре пер-лит+феррит (или перлит+цементит). Цифры являются средними и могут колебаться в пределах 10% в зависимости от содержания примесей, условий охлаждения после прокатки и т. д.2. Если сталь применяют в виде отливок, то более грубая литая структура обладает худшими свойствами, чем это следует из рис. 148 (понижаются главным образом показатели пластичности). Существенно влияние углерода на вязкие свойства. Как видно из рис. 149, увеличение содержания угле-  [c.181]

Показатели пластичности (б, г))) увеличиваются с повышением температуры отпуска. Наибольшая пластичность (il ) соответствует отпуску при 600—650°С, когда весь комплекс механических свойств выше, чем у отожженной стали. Отпуск выше 650°С уже не повышает пластичность (ifi).  [c.280]


Таким образом, проведенные исследования позволили отклонить предположения о разрушении металла коллектора в результате снижения малоцикловой прочности или коррозионного растрескивания. Необходимо подчеркнуть, что и по другим характеристикам, таким, как хрупкая прочность, сопротивление усталостным разрушениям на стадии зарождения и развития трещин на воздухе и в коррозионной среде, были подтверждены высокие показатели, при которых преждевременное разрушение коллектора не должно было бы произойти. Вместе с тем, эксперименты по замедленному деформированию (растяжение гладких образцов с малой скоростью деформирования) в коррозионной среде показали, что при составе среды, соответствующей отклонениям, имевшим место в процессе эксплуатации разрушившихся коллекторов (низкий водородный показатель pH, присутствие кислорода), может происходить значительное снижение пластичности стали, причем тем большее, чем ниже скорость деформирования. Такая закономерность соответствует зависимости критической деформации от скорости деформирования в условиях ползучести материала (см. гл. 3). Данное обстоятельство привело к необходимости изучения возможных временных процессов деформирования материала коллектора при стационарном нагружении. Выполненные эксперименты, ре-з льтаты которых будут представлены ниже, показали, что  [c.328]

Как коррозионностойкий материал применяется свинец чистоты не меиее 99,2%- Примеси в свинце (Си, 5п, Аз, Ре, В1 и др.) увеличивают прочностные показатели свинца, но уменьшают его пластичность. Примеси мышьяка придают свинцу хрупкость. Имеются указания, что примеси серебра, никеля и меди повышают коррозионную стойкость свинца, если они распределены в сплаве равномерно. Однако в процессе коррозии па поверхности свинца скапливаются эти благородные примеси, образующие микрокатоды, что может привести к повышению скорости коррозии свинца.  [c.261]

Изучение влияния различного рода покрытий тугоплавких материалов и их сплавов на показатели прочности и пластичности этих материалов при высоких температурах, чтобы оптимизировать тип покрытия и технологию его нанесения для различных условий эксплуатации элементов конструкций из тугоплавких и жаропрочных материалов с покрытием.  [c.663]

Деление материалов на пластичные и хрупкие является условным не только потому, что между теми и другими не существует резкого перехода в показателе 8, В зависимости от условий испытания многие хрупкие материалы способны вести себя как пластичные, а пластичные — как хрупкие.  [c.67]

Под твердостью понимается способность материала противодействовать механическому проникновению в него посторонних тел. Понятно, что такое определение твердости повторяет, по существу, определение свойств прочности. В материале при вдавливании в него острого предмета возникают местные пластические деформации, сопровождающиеся при дальнейшем увеличении сил местным разрушением. Поэтому показатель твердости связан с показателями прочности и пластичности и зависит от конкретных условий ведения испытания.  [c.68]

Для повышения сопротивляемости сварных соединений образованию горячих трещин необходимо в процессе производства стремиться к такому сочетанию их свойств в т.и.х., технологических приемов и способов сварки, а также такому конструктивному оформлению узлов, которые обеспечивали бы при минимальных значениях деформации формоизменения максимальный уровень показателя а — а а. Для этого необходимо стремиться к уменьшению интервала хрупкости, увеличению пластичности металла шва в т.и.х. и снижению темпа деформации.  [c.487]

Таким образом, методы прогнозирования ресурса должны базироваться на таких критериях, которые бы учитывали временные процессы накопления повреждений в металле. В качестве параметров надежности должны быть показатели долговечности, например, время до разрушения или число циклов нагружения до разрушения. Существующие нормативные материалы по расчету прочности не позволяют получать такие важные характеристики прочностной надежности. Например, в процессе эксплуатации аппаратов вследствие деформационного старения происходит некоторое повышение прочностных свойств, т.е. временного сопротивления и предела текучести металла. Для конструктивных элементов оборудования из низкоуглеродистых и низколегированных сталей, работающих при нормальных условиях эксплуатации, значение предела текучести может возрастать до 20%. Заметим, что временное сопротивление Gb является расчетной характеристикой при выполнении прочностных расчетов по действующим НТД. Из этого следует парадоксальный вывод о том, что с увеличением срока службы аппарата можно увеличивать рабочее давление, если производить оценку прочности по действующим отраслевым нормам и правилам. Другими словами, с увеличением срока службы аппарата его надежность должна увеличиваться. В действительности, наряду с увеличением прочностных свойств происходит повышение отношения предела текучести к пределу прочности К в, снижение пластичности и вязкости, которые определяют ресурс длительной прочно-  [c.366]


Исследования [1], показали, что наиболее информативным показателем пластичности, контролирующем фрактальную размерность объема, претерпевающего предельную пластическую деформацию, является поперечная деформация (у) к моменту разрушения, т.е. степень деформации, отвечающей неравномерному фазовому переходу, при достижении которого спонтанно меняется механизм диссипации энерг ии (переход от деформации к разрушению).  [c.100]

От предельного изгибающего момента отвечающего развитому пластическому течению и неспособности соединения при этом воспринимать дальнейшую нагрузку, следует отличать предельный разрушающий момент М , при котором происходит нарушение сплошности материала (образование микротрещин и т. д.) вследствие исчерпания ресурса пластичности материала прослойки / р. Так как ресурс пластичности является функцией показателя жесткости напряженного состояния П ( П = а /Т—отношение шаровой части тензора напряжений к девиаторной /11 /). с повышением уровня нормальных напряжений растяжения в прослойке повышается показатель жесткости напряженного состояния и падает ресурс пластичности мягкого металла Лр. Уровень нормальных напряжений в прослойке возрастает с уменьшением ее относительной толщины ае, следовательно и предельный разрушающий момент Мр будет зависеть от геометрических параметров мягкой прослойки. Основные соотношения для его определения приведены в /12/.  [c.27]

Приведем значения показателя напряженного состояния П в вершине дефекта, исходя из которого по диаграммам пластичности находят предельную степень интенсивности пластических деформаций.  [c.55]

Литые и обработанные давлением металлы обычно проявляют анизотропию свойств особенно таких показателей пластичности, как относительное удлинение, относительное сужение, ударная вязкость. Обычно литой металл менее пластичен, чем обработанный давлением, причем пластичность литых металлов вдоль направления столбчатых кристаллов больше, чем поперек этого направления. Анизотропия свойств частично сохраняется и после пластической деформации, причем образцы, вырезанные в направлении наибольшей деформации, более пластичны, чем в других направлениях. Причинами анизотропии свойств являются  [c.433]

Преимущество расчетов прочности не по напряжениям, а по деформациям состоит в том, что в деформационные критерии вязкого, квазнхруикого и хрупкого разрушений при однократном нагружении входит комплекс основньм характеристик механических свойств— прочность, пластичность, показатели упрочнения в неупругой области, а также другие параметры диаграмм деформирования. Это позволяет проводить количественный анализ эффективности применения конструкционных материалов с различными статическими свойствами для машин и конструкций, работающих в широком диапазоне нагрузок, температур и скоростей деформирования.  [c.6]

Сварка на повышенных силах тока приводит к получению металла швов с пони/кенными показателями пластичности и ударной вязкости, что вероятно объясняется повышеппыми скоростями охлаждения. Свойства металла шва, выполненного на обычных режимах, соответствуют свойствам металла шва, выполненного электродами типа Э50А. В промышленности находит применение и сварка в углекислом газе порошковыми проволоками. Технология этого способа сварки и свойства сварных соединений примерно те же, что и при использовании их при сварке без дополнительной защиты.  [c.227]

В связи с тгм, что до сих пор нет такого ун шерсальиого по- <азателя пластичности материала, который учитывал бы химический состав, структуру, механические свойства материала, тип напряженного состояния, скорость деформации, температуру, при которой проводится деформация, вероятность изменения ее в процессе, во времени деЛормации и т.п. надо пользоваться имеющимися показателями пластичности, учитывая определенные условия деформирования и конкретные данные, характерные для дефорыирувиюго ште-риала.  [c.28]

Превде всего необходимо проводить механические испытания материалов, чтобы получить количественные показатели сопротивления деформированию и показатели пластичности данного материала в определенных условиях (в нашем случае гфи температуре штамповки).  [c.28]

ОсоГ ый интерес представляет лист, предназначенный для крыльев и кузовов автомобиля. Сталь для глубокой вытяжки должна отличаться большой пластичностью. Поэтому для этих целей применяют сталь с минимальным содержанием углерода. Действительно, для особо сложной штамповки содержание угле-]юда ограничивается 0,08%. Существенно также ограничение содержания и других постоянных примесей (марганца, кремния, серы, фосфора), так как все они в той или иной степени уменьшают пластичность стали. Однако это ограничение (например, по марганцу) не должно ухудшать качество стали по другим показателям.  [c.199]

Развитие машиностроения и приборостроения предъявляет возрастающие требования к качеству металла его прочности, пластичности, газосодержанию. Улучшить эти показатели можно уменьшением в металле вредных примесей, газов, неметаллических включений. Для повышения качества металла "спользуют обработку металла синтетическим шлаком, вакуумную дегазацию металла, плавку в вакуумных печах, электрошлаковый переплав (ЭШП), вакуумно-дуговой переплав (ВДП), вакуумно-индукционный переплав (ВИП), переплав металла в глектронно-лучевых и плазменных печах.  [c.45]

Влияние состава коррозионной среды на пластичность стали 10ГН2МФА исследовали посредством испытаний гладких цилиндрических образцов диаметром 5 мм, нагружаемых с постоянной скоростью перемещения захватов Скорость деформации изменяли от 1,5-10 до 10 с . Рабочей средой служила дистиллированная вода с различным содержанием кислорода и показателем pH при Г = 200 Ч- 320 °С и равновесных давлениях.  [c.345]


Чистый никель в химическом машиностроении нашел сравнительно ограниченное применение, несмотря на то что, помимо коррозионной стойкости, он обладает повышенной жаростойкостью, значительной пластичностью, хорошими механическими показателями и способностью подвергаться различным видам механической обработки (никель легко прокатывается в горячем и холодном состоянии). Объясняется это тем, что никель не имеет особых преимугцеств по сравнению с нержавеющими сталями, но в некоторых средах, в которых легированные стали непригодны, нашли примеггеиие сплавы никеля с медью и его сплавы с молибденом.  [c.255]

Помимо В111СОКОН коррозионно ) стойкости, к числу положительных свойств серебра следует отнести его высокую пластичность, исключительно высокую теплопроводность, высокую отражательную способность при сравнительно благоприятных механических и технологических показателях. По физическим свойствам серебро близко к меди, а ио механической ирочиости оно уступает никелю и нержавеющей стали.  [c.275]

Цирконий обладает сравнительно низкими прочностными показателями при высокой пластичности. Наиболее чистый цирко-нгп имеет предел прочности --175 Мн1м предел текучести 55 Мн мК при удлинении более 50%. Примеси, присутствующие в цирконии, упрочняют его, доводя его предел прочности до 400—800 /Ин/.и2 при пределе текучести 250—560 Мн/ж . Твердость ИВ циркония, в зависимости от технологического процесса его получения и степени чистоты, доходит до 1000 Мн1м , а плотность  [c.288]

Медь обладает хорошей пластичностью и прочностью, высокими показателями коррозионной стойкости,электро- и теплопроводности и вакуумной плотности. Благодаря этим свойствам медь применяется во многих отраслях промышленности химической, электротехнической, судостроении и др. В технике исполйзуют техническую медь разной степени чистоты Ш, М1, М2, М3, М4 и ее сплавы. Все сплавы на основе меди можно разделить на два типа , латуни (Л) и бронзы (Бр.) Латунь — сплав меди сцинком при содержании цинка более 4%. Применяют латуни простые, легированные только цинком, и специальные атуни, которые кроме цинка содержат и ряд других легирующих компонентов. Бронзы пред-етавляют собой сплавы меди, содержащие не более 5—6% цинка (обычно менее 4%).  [c.136]

Из анализ полученных результатов выполненных исследований установлено, что при увеличении силы тока до 110-130А и напряжения дуги до 21-23 В наблюдается заметное увеличение пластичности по показателям угла загиба от  [c.304]

Более подробно следует остановиться на значениях прочностных характеристик, которые в дальнейшем будут фигурировать в зависимостях для расчета статической прочности механически неоднородных соединений. Ранее, в работе /9/, для бездефектных соединений с мягкими прослойками нами была принята на основе многочисленных зкспериментальнььх данных идеально-жестко-пластическая диаграмма мягкого металла М. При этом, в расчетных формулах данную диаграмму в условиях общей текучести аппроксимировали на уровне значений временного сопротивления металла М (ст ). Для соединений с плоскостными дефектами такой подход применим не всегда. Последнее связано с ростом вблизи вершины дефекта показателя напряженного состояния П = Oq/T (здесь Од — гидростатическое давление, Т— интенсивность касательных напряжений, которая равна пределу текучести мягкого или /с твердого металлов при чистом сдвиге). Предельную (предшествующую разрушению) интенсивность пластических деформаций можно определить из диаграмм пластичности, отражающих связь предельной степени деформации сдвига Лр с показателем напрязкенного состояния П для конкретных материалов сварных соединений /9, 24/. Для этого необходимо знать показатель напряженного состояния П, величина которого зависит только от геометрических характеристик сварного соединения, степени его механической неоднородности и размеров дефекта П = (as, 1/В, f )Honpe-деляется из теоретического анализа. Определив значение предельной интенсивности пластических деформаций, по реальной диаграмме деформирования рассматриваемого металла СТ, =/(Е ) находим величину интенсивности напряжений в пластической области. Интервалы изменения а следующие Q.J, < а . Для плоской деформации та -кая подстановка в получаемые формулы означает замену временного сопротивления на данную величину.  [c.50]

Для подсчета значений эквивалентного радиуса экспериментальным путем по методике /24/ для металла сварных швов были получены диаграммы пластичности, которые представлены на рис. 3.19, Для показателя напряженного состояния П = 3,08, который был получен на основе метода линий скольжения для образцов при внецентренном растяжении, значения ресурса пластичности были следующие >.р = 0,47 (металл шва ЭП-659 Ви) и А.р = 0,12 (АМгб). С учетом формулы (3.7) для рассматриваемых материалов были получены примерно одинаковые значения эквив шентного радиуса рд = 0,023 мм.  [c.106]

Определенное затруднение при нахождении критических напряжений, соответствующих образованию надрывов на контуре пор, может составить отсутствие диаграмм пластичности матери<шов, представляющих собой взаимосвязь критических значений интенсивности деформаций от показателя жесткости напряженного состояния П (П обычно определяют Kait отношение шаровой части тензора напряжений к девиаторной). Для большинства конструкционных материалов такие данные можно найти, например, в литературных источниках /11,12, 24, 25/ или воспользо-ват5зся стандартными мстодика.ми для построения таких диаграмм /24/.  [c.134]

Получаемые при механических испытаниях следующие величины б=(/к—/о)//о — относительное удлинение (/к, 1о — начальная и конечная длина образца) г з = = Fo —F,u)/Fo — относительное сужение (Fq — площадь поперечного сечения — площадь поперечного сечения шейки) п — число оборотов при скручиващ1И до разрушения не являются мерами пластичности, однако количественно характеризуют пластичность в данных условиях называют их характеристиками пластичности или показателями пластичности.  [c.488]

Например, при однорсном растяжении при кручении =0 при одноосном сжатии fe=— 1-КЗ, в связи с чем показатели пластичности и предел пластичности различны по величине, т. е. при разных значениях k достигается разный уровень деформации в момент разрушения. Поэтому, например, считают, что испытание на скручивание лучше отражает технологические особенности поведения металлов в реальных процессах обработки давлением, так как деформация при скручивании больше, чем при растяжении, и приближается к величине, характерной для технологических процессов ОМД. Естественно стремление многих исследова-  [c.489]


Смотреть страницы где упоминается термин Пластичность показатель : [c.200]    [c.259]    [c.200]    [c.218]    [c.280]    [c.221]    [c.70]    [c.207]    [c.57]    [c.132]    [c.194]    [c.261]    [c.287]    [c.91]    [c.490]   
Физические основы пластической деформации (1982) -- [ c.488 ]



ПОИСК



Зависимости показателей пластичности и деформируемости

Пластичность сужение как показатель

Показатели пластичности металлов

Усталостной пластичности показатель



© 2021 Mash-xxl.info Реклама на сайте