Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общая теория вихрей

Теоретические вопросы теории вихрей также остаются предметом интенсивного обсуждения. Для получения представления о современном уровне теории вихрей российскому читателю следует рекомендовать две недавно вышедшие в издательстве РХД книги книгу В. В. Козлова Общая теория вихрей , посвященную общему формализму вихревой теории и ее связям с различными областями математической физики, оптики, теоретической механики, а также книгу  [c.7]


В качестве основательной монографии, в которой обсуждаются вихревые аналогии с различными задачами оптики, электродинамики и термодинамики, укажем замечательную книгу В. В. Козлова Общая теория вихрей (Изд. дом Удмуртский университет , 1998.), в которой построена также  [c.12]

ОБЩАЯ ТЕОРИЯ ВИХРЕЙ  [c.1]

Ключевой вопрос применимости общей теории вихрей, развитой в главе II, состоит в нахождении инвариантных многообразий, однозначно проектирующихся на конфигурационное пространство. Этот вопрос легко и естественно решается для волчка Эйлера — задачи о вращении по инерции твердого тела с неподвижной точкой в трехмерном евклидовом пространстве. Многие результаты этого параграфа непосредственно обобщаются на более общую задачу о геодезических на группах Ли с левоинвариантной метрикой.  [c.154]

Валерий Васильевич Козлов ОБЩАЯ ТЕОРИЯ ВИХРЕЙ  [c.239]

Работы по теории идеальной жидкости в существенном можно разделить на отделы 1. Теория крыла. 2. Теория винта. 3. Общие вопросы вихри, теория струй и т.д. В таком порядке мы и изложим полученные результаты.  [c.167]

Заслуга выделения из общего движения элемента жидкости части, отвечающей движению твердого тела, принадлежит Коши, который в 1815 г. впервые ввел понятие о среднем вращении жидкости в точке . Однако, имея в виду дальнейшее развитие и применение понятия вращения в теории вихрей, созданной Гельмгольцем, мы сохраним общепринятое наименование только что доказанной теоремы.  [c.58]

Создание общей теории воздействия плоского потока идеальной жидкости на помещенный в него крыловой профиль является заслугой великого русского ученого Н. Е. Жуковского, опубликовавшего свою известную теорему о подъемной силе крыла в 1906 г. в классическом мемуаре О присоединенных вихрях . Н. Е. Жуковский первый установил вихревую природу сил, действующих со стороны потока на крыло, и указал на наличие простой пропорциональности между этой силой и интенсивностью вихря, присоединенного к обтекаемому телу.  [c.277]

Турбулентность принадлежит к числу очень распространенных и, вместе с тем, наиболее сложных явлений природы, связанных с возникновением и развитием организованных структур (вихрей различного масштаба) при определенных режимах движения жидкости в существенно нелинейной гидродинамической системе. Прямое численное моделирование турбулентных течений сопряжено с большими математическими трудностями, а построение общей теории турбулентности, из-за сложности механизмов взаимодействующих когерентных структур, вряд ли возможно. При потере устойчивости ламинарного течения, определяемой критическим значением числа Рейнольдса, в такой системе возникает трехмерное нестационарное движение, в котором, вследствие растяжения вихрей, создается непрерывное распределение пульсаций скорости в интервале длин волн от минимальных, определяемых вязкими силами, до максимальных, определяемых границами течения. На условия возникновения завихренности и структуру развитой турбулентности оказывают влияние как физические свойства среды, такие как молекулярная вязкость, с которой связана диссипация энергии в турбулентном потоке, так и условия на границе, где наблюдаются тонкие пограничные вихревые слои, неустойчивость которых проявляется в порождении ими вихревых трубок. Турбулизация приводит к быстрому перемешиванию частиц среды и повышению эффективности переноса импульса, тепла и массы, а в многокомпонентных средах - также способствует ускорению протекания химических реакций. По мере накопления знаний о разнообразных природных объектах, в которых турбулентность играет значительную, а во многих случаях определяющую роль, моделирование этого явления и связанных с ним эффектов приобретает все более важное значение.  [c.5]


Большой интерес в настоящее время представляет возможность применения метода вихревого слоя, к профилям конечной толщины.. При этом вихри распределяются по поверхности профиля и задача решается в точной постановке. Общая теория вопроса является непосредственным приложением математической теории потенциала задача сводится к построению подходящих численных методов расчета. Наибольшее значение метод вихревого слоя приобрел в связи с новыми возможностями, которые дают ЭВМ. В частности, Г. А. Павловец (1966) разработал схему численного расчета обтекания многосвязных контуров произвольной формы. В этой работе метод вихревого слоя применяется в интерпретации М. А. Лаврентьева (1932), когда задача сводится к интегральному уравнению Фредгольма второго рода, выражающему обращение в нуль касательных скоростей потока с внутренней стороны замкнутого контура. При построении численного метода для отыскания неизвестного распределения плотности вихревого слоя на всех контурах используется итерационный процесс решения системы интегральных уравнений Фредгольма второго рода. Численный метод дает реальную возможность рассчитывать поле течения для таких сложных систем, как толстый профиль со щелевыми закрылками и предкрылками, механизированный профиль вблизи земли и т. п.  [c.88]

Ранние исследования по теории вихревого движения восходят к Декарту, Гюйгенсу, Иоганну и Даниилу Бернулли. В этот период были установлены некоторые закономерности вихревого взаимодействия, но вихревая теория не достигла такого совершенства и полноты, как ньютоновская теория гравитации. Несмотря на ожесточенную полемику картезианцев (приверженцев Декарта) и ньютонианцев, она вскоре бьша вытеснена ньютоновской картиной мира и почти совсем забыта. Отметим, что исторически первые труды Эйлера и Лагранжа, создававших ньютоновскую гидродинамику (а также теорию сплошных сред), ограничивались описанием потенциальных (безвихревых) течений идеальной жидкости. Захватывающее описание этого периода вихревой теории можно найти в книге В. В. Козлова Общая теория вихрей . Изд. дом Удм. университет , 1998 [31].  [c.18]

Центральная проблема небесной механики — проблема трех тел — в XVIII в. была уже или предметом, или стимулом многих исследований, без которых нельзя себе представить историю общей механики Это относится к значительной части тех работ, которые рассмотрены в первых пунктах настоящей главы. Связь исследований по общей и небесной механике становится совершенно явной и систематической к середине XVIII в., когда стала общепризнанной безнадежность построения теории орбит (планет и комет) на основе декартовой теории вихрей, и получили достаточные подтверждения расчеты, основанные на законе тяготения Ньютона. Наибольшее значение имели в то время исследования по теории движения Луны как для небесной механики, так и для навигационной практики. Тут надо отметить работы Кле-ро и Эйлера, в частности премированное в 1751 г. Петербургской академией наук исследование Клеро, само название которого программно Теория движения Луны, выведенная единственно из начала притяжения, обратно пропорционального квадратам расстояния . Оценивая это исследование, Эйлер писал в отзыве, составленном но поручению Петербургской академии, что эту диссертацию не только нужно считать достойной высшей награды, но через нее и слава знаменитейшей Академии возрастает не незначительно, так как, предложив вопросы столь трудные, она привела к ясности положения самые скрытые Велико историческое значение и другой работы Клеро, тоже получившей в 1762 г. премию Петербургской академии наук. В ней было рассчитано время прохождения кометы Галлея .  [c.153]

Н. Е. Жуковский является основоположником учения о подъемной силе крыла в илоскопараллельном потоке. Знаменитая формула Жуковского, выражающая подъемную силу крыла в виде произведения плотности жидкости на скорость движения в ней крыла и на напряжение присоединенных вихрей или циркуляцию , опубликованная п 1906 г., получила всеобщее признание как основа теории подъемной силы крыла. Зарубежные историки аэродинамики пытаются без достаточных к тому оснований поделить приоритет Жуковского на эту формулу с немецким ученым Кутта, работа которого по вопросу о подъемной силе частного вида крыла была опубликована несколько ранее работы Жуковского. При этом затушевывается тот основной исторический факт, ч го только Жуковский дал первую общую теорию подъемной силы, основанную на смелой и оригинальной идее присоединенного вихря . Приоритет на циркуляционную теорию подъемной силы великого русского ученого, далеко продвинувшего вперед разрешение почти всех основных гидроаэродинамических проблем своего времени и открывшего новые пути развития современной механики жидкости и газа, совершенно неоспорим.  [c.30]



Смотреть страницы где упоминается термин Общая теория вихрей : [c.14]    [c.320]    [c.859]    [c.399]    [c.278]    [c.7]    [c.350]    [c.482]    [c.118]    [c.2]    [c.105]    [c.107]    [c.111]    [c.115]    [c.117]    [c.119]    [c.121]    [c.123]    [c.125]    [c.127]    [c.131]    [c.133]    [c.135]    [c.137]    [c.139]    [c.141]    [c.143]    [c.145]    [c.296]    [c.2]    [c.168]   
Смотреть главы в:

Общая теория вихрей  -> Общая теория вихрей



ПОИСК



Вихрь



© 2025 Mash-xxl.info Реклама на сайте