Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Планетарные Трение

Потери на трение с зацеплении "фз планетарных передач могут быть как меньше, так и больше, чем в простых передачах. Значение г]), в значительной степени зависит от схемы и параметров передачи. Это является одной из особенностей планетарных передач.  [c.160]

Потери мощности на трение в силовых планетарных передачах относительно небольшие и при проектировочных прочностных расчетах можно их не учитывать. При таком допущении соотношение  [c.163]


При более точных (проверочных) расчетах принимаются во внимание факторы, которые учитываются коэффициентом полезного действия. Последний определяется из следующих предположений. Потеря мощности в планетарной передаче образуется из потерь на трение в зацеплениях, опорах и потерь на размешивание и разбрызгивание масла. Расчетным путем относительно точно можно определить потери в зацеплении и опорах. Аналитическое определение гидравлических потерь сложно и приближенно, поэтому их определяют опытным путем. Обычно они составляют небольшую часть от потерь в зацеплении и в расчетах часто не учитываются.  [c.165]

Моменты трения в опорах центральных звеньев планетарных механизмов при равномерном расположении осей сателлитов по окружности диска водила и равномерном распределении нагрузки между  [c.331]

В планетарных механизмах передача энергии от ведущего вала к ведомому осуществляется как в переносном, так и в относительном движениях звеньев. В результате вращения звеньев вокруг центральной оси с угловой скоростью Ын водила (переносное движение) возникают потери энергии, обусловленные трением в опорах центральных звеньев, а также потери на перемешивание и разбрызгивание масла. Этими потерями обычно пренебрегают.  [c.331]

Основные потери энергии в планетарном механизме на трение в зацеплениях пар сопряженных колес и их подшипниках имеют место в результате относительного движения. С учетом этих потерь и рассчитывают КПД.  [c.331]

Планетарные передачи, базовым механизмом для которых служит дифференциал с двумя внутренними зацеплениями блока сателлитов (см. рис. 19, б), более рациональны как в отношении габаритов, так и в отношении потерь на трение в зацеплениях. Однако большую величину передаточного отношения можно здесь получить только при минимальной разности чисел зубьев сопряженных центральных колес и сателлитов. В таких передачах может быть установлен всего один блок сателлитов, что ограничивает верхний предел передаваемой мощности величиной 30—35 кВт.  [c.338]

Таким образом, заданное передаточное отношение можно обеспечить множеством различных схем планетарных передач, которые будут значительно отличаться по размерам, к. п. д., динамическим качествам. Схемы должны выбираться как с учетом качества простых планетарных передач, из которых компонуется зубчатый редуктор, так и назначения механизма, условия и режима его работы, места установки, а также учета типа передачи и вида зацепления, распределения и г ц по ступеням и выбора числа ступеней, оценки потерь на трение, вибрации и упругости звеньев и пр. Поэтому в общем случае выбор схемы с учетом множества факторов может быть выполнен только методами оптимизации с применением ЭВМ.  [c.420]


Пример. Дифференциальный планетарный механизм состоит из двух шестерен радиусами и г. и кривошипа ОА (рис. 99). К кривошипу приложена пара сил с моментом М, а к шестерням / и 2 — пары сил с моментами и Ме ханизм расположен в горизонтальной плоскости. Определить моменты пар сил /Ии Т/(, которые следует приложить к шестерне 1 и кривошипу ОА для равновесия механизма. Трением в шарнирах пренебречь.  [c.384]

Трение в зубчатом зацеплении и расчет коэффициента потерь. Коэффициент полезного действия планетарного зубчатого редуктора  [c.161]

Коэффициент трансформации при вращающемся направляющем аппарате без учета дискового трения, объемных и механических потерь (но с учетом потерь в планетарном ряде) будет равен  [c.202]

Изложенный выше метод расчета к.п.д. планетарной передачи дает приближенный результат, так как не учитывает потери на трение во вращательной кинематической паре водила, коэффициент потери в которой обычно сравнительно мал (2—3%).  [c.352]

Точный учет сил и мощности трения в планетарных механизмах представляет большие трудности. Ниже рассмотрен приближенный способ определения к. п. д. этих механизмов, обеспечивающий вполне достаточное совпадение результатов расчета с экспериментальными данными.  [c.130]

Рассмотрим теперь схему, изображенную на рис. 333, и определим к. п. д. планетарного редуктора с учетом сил трения в подшипниках.  [c.338]

Точное определение к. п. д. планетарных механизмов представляет трудности, так как силы трения элементов кинематических пар зависят от центробежных сил сателлитов, условий смазки, нестабильности коэффициента трения и других причин. Поэтому при ориентировочных расчетах к. п. д. планетарной передачи приближенно определяют как к. п. д. так называемого обращенного механизма, получаемого из планетарного при закреплении водила. Методы определения к. п. д. приведены в 6.7.  [c.342]

Б (битумно-масляная) Тормозные механизмы тракторов, экскаваторов, машин, специального назначения различных лебедок, пневмоколесных кранов, самоходных шасси комбайнов планетарно-фрикционных механизмов породопогрузочных машин и других тормозных и фрикционных узлов ь- поверхностной температурой трения до 300 С, при удельном давлении до 50 кГ/см и отсутствии масла на поверхности трения  [c.75]

Трение в эпициклических планетарных передачах  [c.407]

Трение в дифференциально-планетарных механизмах  [c.416]

Трение в эксцентриковых планетарных редукторах с большим передаточным отношением и высоким к. п. д.  [c.419]

Явление самоторможения, как мы знаем, наблюдается, например, в наклонной плоскости, при угле ее подъема, меньшем угла трения, в винте, в червячной передаче и винтовых колесах при достаточно малом угле подъема винтовых линий зубьев на ведущем винтовом колесе. Как правило, в самотормозящихся механизмах при прямом ходе имеет место низкий к. п. д. (т] <0,5), что и является косвенным признаком явления самоторможения. То же наблюдается, как мы видели (см. п. 53), и в планетарных механизмах с большим передаточным отношением. С увеличением передаточного отношения некоторых типов этих механизмов к. п. д. у них резко снижается и 27 419  [c.419]

Каким же путем идти к увеличению к. п. д. планетарных редукторов при большом передаточном отношении. Один из возможных путей — увеличение к. п. д. зубчатых пар, входящих в редуктор. Этого можно достичь, например, применением в планетарной передаче внутреннего зацепления. Как известно из п. 36, потери на трение в зубьях выражаются формулой  [c.424]

ЛАТ-1 Тормозные И фрикционные узлы, работающие при давлении 1,15 МПа при трении без смазки. Тормозное ленточное устройство планетарного редуктора отбора мощности трактора при давлении на поверхности трения до 3 МПа в среде масла  [c.216]

В монографии изложены вопросы кинематики некоторых механизмов планетарно-дифференциального типа, сателлиты которых являются рабочими органами даются кинематические характеристики сателлитов, рассматривается динамика некоторых дифференциальных и рычажных механизмов описаны уравнения движения машинных агрегатов с учетом характеристик источника движения и сопротивлений. Разработано определение коэффициентов трения скольжения между элементами кинематических иар методами линейных и угловых аналогов. Дано решение задач динамики механизмов на электронной модели.  [c.2]


Оптимальная величина жесткости связи способствует созданию нормального трения между элементами фрикционной пары. На рис. 21 показан плоский планетарный механизм с упругой связью. Здесь водило обозначено цифрой 1. На конце водила 1 шарнирно присоединен сателлит 2, свободно вращающийся вокруг собственной оси О. Роль солнечного колеса выполняет звено 3, имеющее упругую связь 4.  [c.68]

На сектор планетарного механизма действуют внешние силы упругая сила пружины, сила реакций в кинематических парах и сила трения. Изучение этих сил начнем с определения характеристики пружины при условии отсутствия отрыва сектора от ролика (сателлита). Определив эту характери-  [c.78]

Внутренние кольца шарикоподшипников смонтированы неподвижной посадкой на общей втулке 20, сама же втулка закреплена на шпинделе шпонкой. Наружные кольца шариковых подшипников входят скользящей посадкой в обойму 23 и стопорятся тремя винтами. Для регулировки подшипников на обойме 23 имеются специальные винты, раздвигающие наружные кольца шарикоподшипников и натягом создающие трение, необходимое для передачи движения. Обычные сепараторы шариковых подшипников заменены специальными. Сепаратор 21 нижнего шарикового подшипника закрепляется неподвижно на корпусе шпиндельной бабки, а сепаратор 24 верхнего подшипника подвижен и является выходным валом редуктора. Передаточное число планетарно-фрикционного редуктора определяют по формуле  [c.352]

Двизкение колеса а можно разложить на два переносное — совместно с води-лом h 11 относительное — относительно водила h. Мощность переносного движения (Ра)л = а"/гЛ/30 передается без потерь (г()э = 0). Мощность относительного движения Pa = T iiii — л/30 передается с потерями на трение > 0. В зависимости от значения и направления Пд и П ,, Рд может быть больше или меньше Яд. Поэтому и потери в планетарной передаче могут быть больше или меньше, чем в простой. В передачах с внешним зацеплением а и g (см. рис. 8.45) и /ft имеют одинаковые знаки (Пд — п/,, < Пд), потери в них меньше, чем в передачах с внутренним зацеплением а и g (см. рис. 8.48, й), у которых п и я/, имеют разные знаки [Пд — (—п/,) > Пд]. Это следует учитывать при выборе схемы передач.  [c.160]

В роликовых планетарных передачах винт — гайка (рис. 15,6) для обеспечения трения качения между резьбой винта / и резьбой гайки 4 катаются резьбовые ролики 3, которые одновременно являются сателлитами планетарных зубчатых передач с внутренним зацеплением. Углы подъема резьбы на гайке и роликах одинаковы. Для этого резьба гайки делается многозаходной с числом заходов (целое число), равным отношению средних диаметров резьбы и роликов. Это обеспечивает невыкатывание роликов из гайки. На роликах нарезана треугольная резьба с выпуклым профилем, обеспечивающим точечный начальный контакт.  [c.314]

КПД планетарного механизма можно определять двумя методами. Первый метод основан на силовом расчете с учетом трения. Второй метод основан на предиоложении, что при обращенном движении силы, действующие на звенья механизма, не изменяются и потому их отношения могут быть выражены через КПД обращенного механизма. Второй метод является приближенным, так как ири обращении движения несколько меняются силы гидравлического сопротивления (в передачах с колесами, погруженными в масляную ванну), не учитываются центробежные силы инерции и т. п. Однако он применяется чаще, так как при расчетах по первому методу надо иметь значения коэффициентов трения в зубчатых зацеплениях, которые, как правило, не известны. При расче-  [c.206]

Т. е. равно числу зубьев сателлита 1. Рассматриваемая схема обеспечивает возможность получения больших передаточных отношений при двух колесах. Располагая соответствующим образом оси кривошипов на саталлите /, можно значительно уменьшить давление в кинематических парах механизма. Благодаря этому, а также использованию колес внутреннего зацепления, потери на трение в которых значительно меньше, чем в колесах внешнего зацепления, к. п. д. рассмотренных, механизмов несколько выше. Так, например, при = —39 к. п. д. механизма Пнз = 0,7. В отличие от других типов планетарных меха-  [c.138]

К. п.д. планетарного механизма. Обеспечение заданного передаточмого отношения есть основное условие синтеза планетарных механизмов. Из дополнительных условий одним из важнейших является коэффициент полезного действия (к. п. д.) К. п. д. планетарного механизма можно определять двумя методами. Первый метод основан на силовом расчете с учетом трения. Второй метод основан на предположении, что при обращенном движении силы, действующие па звенья механизма, не изменяются, и потому их отношения могут быть выражены через к. п. д. обращенного механизма. Второй метод является приближенным, так как при обращении движения несколько меняются силы гидравлического сопротивления (в передачах с колесами, погруженными в масляную ванну), не учитываются центробежные силы инерции сателлитов и т. п. Однако он применяется чаще, так как при расчетах по первому методу надо иметь значения коэффициентов тренпя в зубчатых зацеплениях, которые, как правило, не известны. При расчетах по второму методу требуется лишь знать к. п. д. зубчатого механизма с неподвижными осями (к. п. д. обращенного механизма), экспериментальные значения которого определены с достаточной точностью.  [c.462]


В качестве механизмов широко применяются зубчатые преобразователи движения редукторы с неподвижными в пространстве осями (непланетарные редукторы) редукторы с подвижными в пространстве осями (планетарные редукторы) зубчато-реечные, червячнореечные и червячные механизмы и др. При исследовании динамических явлений в приводах возникает необходимость учитывать реальные динамические характеристики таких механизмов, в частности их упруго-диссипативные свойства, влияние зазоров и сил трения в кинематических парах.  [c.3]

Рис. 5.37. Фрикционный планетарный вариатор скорости. На ведущем валу 1 закреплено колесо 2 с внешним конусом, а на ведомом 11 — колесо 9 с внутренним конусом (см. рис. 5.37, я), Между колесами 2 и 9 зажаты ролики 4 с двойным конусом, которые соединены между собой сепаратором 3. Ролики 4 находятся также в контакте с выступающей внутренней кольцевой поверхностью кольца 6. Нормальное давление по линии контакта, достаточное для передачи движения трением, обеспечивается тарельчатыми пружинами 10. Регулирование скорости ведомого вала осуществляется перемещением кольца б в корпусе 5 посредством вращения маховичка 7, еоединенного с шестерней 8 конической передачи. Колесом этой пары является цилиндр 13 с винтовым пазом, в котором расположен ползун с пальцем 12, Рис. 5.37. <a href="/info/159494">Фрикционный планетарный вариатор</a> скорости. На ведущем валу 1 закреплено колесо 2 с внешним конусом, а на ведомом 11 — колесо 9 с внутренним конусом (см. рис. 5.37, я), Между колесами 2 и 9 зажаты ролики 4 с двойным конусом, которые соединены между собой сепаратором 3. Ролики 4 находятся также в контакте с выступающей внутренней кольцевой поверхностью кольца 6. <a href="/info/9920">Нормальное давление</a> по <a href="/info/370279">линии контакта</a>, достаточное для <a href="/info/227714">передачи движения</a> трением, обеспечивается <a href="/info/112103">тарельчатыми пружинами</a> 10. <a href="/info/187021">Регулирование скорости</a> ведомого вала осуществляется перемещением кольца б в корпусе 5 посредством вращения маховичка 7, еоединенного с шестерней 8 <a href="/info/2382">конической передачи</a>. Колесом этой пары является цилиндр 13 с винтовым пазом, в котором расположен ползун с пальцем 12,
Второй подраздел посвящен вопросам приложения общих законов трения, установленных в первом подразделе, к учету трения в отдельных механизмах и передачах, а также к вопросу теоретического определения их к. п. д. и к рассмотрению механических характеристик передач. В гл. XIII этого раздела рассматриваются потери на трение в различного рода Vпередачах фрикционной, ременной, зубчатой, червячной, а также трение в кулачковых механизмах и в планетарных редукторах, простых и дифференциальных. Здесь освещен также вопрос о потерях на трение и к. п. д. в особой разновидности планетарных редукторов, в так называемых эксцентриковых планетарных редукторах.  [c.10]

По принципу действия сцепления разделяются на фрикционные (фиг. 2d), гидродинамические муфты (фиг. 21), комбинированные (фиг. 19). В фрикционных сцеплениях используется сила трения в гидродинамической муфте [40] передача усилия от колеса насоса к колесу турбины осуществляется за счёт кинетической энергии жидкости при этом можно получать значительное относительное проскальзывание валов без вреда для механизма. Это позволяет двигателю даже при малой скорости движения автомобиля работать на больших оборотах, чем достигается весьма высокая плавность передачи усилия от двигателя к ведущим колёсам автомобиля. Гидродинамические муфты, постоянно наполненные жидкостью, не обеспечивают безударного переключения шестерён в обычных коробках передач, так как статическое давление жидкости в системе обусловливает наличие некоторого крутящего момента на валу турбины лаже при малых оборотах насосэ. Для устранения этого недостатка гидродинамические муфты комбинируют либо с планетарными коробками передач, имеющими фрикционное устройство, обеспечивающее безударный пе-  [c.39]

В отличие от первой машины во второй было использовано конструктивное решение механизмов создания рабочего усилия и передачи крутящего момента, объединенных в виде одной силовой головки. Успешное применение в теченпе трех лет и высокая надежность сварных деталей в эксплуатации позволили заложить в конструкции трактора МТЗ-50 пять ответственных деталей с применением сварки трением коронная шестерня планетарного редуктора вала отбора мощности водило планетарного редуктора вала отбора мощности наконечник шарового пальца рулевой трапеции вилка навески гидромеханизма валик рычага механизма включения планетарного редуктора. Специфические условия (различие размеров и форм свариваемых деталей закрепление их за различными цехами поточно-массовый характер производства) исключили возможность использования одной машины для сварки различных деталей. Для сварки каждой из названных деталей необходимо было применять свою специальную машину.  [c.196]

ОБ УРАВНЕНИИ ДВИЖЕНИЯ МНОГОСАТЕЛЛИТНОГО ШРИКЦИОННО-ПЛАНЕТАРНОГО МЕХАНИЗМА С УЧЕТОМ ТРЕНИЯ В ЭЛЕМЕНТАХ КИНЕМАТИЧЕСКИХ ПАР  [c.61]


Смотреть страницы где упоминается термин Планетарные Трение : [c.268]    [c.157]    [c.166]    [c.413]    [c.417]    [c.379]    [c.197]    [c.408]    [c.200]   
Детали машин Том 3 (1969) -- [ c.263 , c.265 , c.274 ]



ПОИСК



К п планетарных

Об уравнении движения многосателлитного фрикционно-планетарного механизма с учетом трения в элементах кинематических пар

Планетарные редукторы. Передаточное число. Применение внутреннего зацепления. Удвоитель хода. Соотношение между моментами без учёта трения. Формула для

Потери на трение в планетарных передачах

Трение в дифференциально-планетарных механизмах

Трение в зубчатом зацеплении и расчет коэффициента потерь Коэффициент полезного действия планетарного зубчатого редуктора

Трение в эксцентриковых планетарных редукторах с большим передаточным отношением и высоким

Трение в эпициклических планетарных передачах



© 2025 Mash-xxl.info Реклама на сайте