Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон Ньютона момента количества движени

Закон сохранения количества движения (второй закон Ньютона) и закон сохранения момента количества движения. Основным динамическим соотношением механики сплошной среды является закон сохранения количества движения. Согласно этому закону скорость изменения во времени количества движения К I) любого материального объема равна главному вектору Р всех действующих на него внешних сил—массовых и поверхностных  [c.33]


Таким образом, производная по времени от момента количества движения системы равна сумме моментов всех сил, действующих на систему, как внутренних, так и внешних. Действие внутренних сил больше не уничтожается на основе только третьего закона Ньютона. Вместо этого требуется более ограничительное условие, состоящее в том, чтобы внутренние силы были центральными, т. е. чтобы они были направлены вдоль линий, соединяющих материальные точки. При этом условии уравнение (2.7) принимает вид  [c.14]

Закон момента количества движения (закон момента импульса) является следствием приложения второго закона Ньютона к вращающимся массам. Ниже мы будем развивать этот принцип только для инерциального контрольного объема.  [c.98]

Уравнение для момента количества движения. В механике системы, состоящей из точечных масс, закон, связывающий внешний вращающий момент с изменением момента количества движения, обычно выводят, применяя к каждой точечной массе второй закон Ньютона. При этом предполагается, что сила взаимодействия между любыми двумя массами 1) действует вдоль линии, соединяющей эти две массы, и 2) удовлетворяет закону равенства действия и противодействия. В данном изложении меха-  [c.24]

О задаче трех и более тел. Задача п тел (п 2) состоит в следующем. В пустоте находятся п материальных точек, взаимодействующих по закону всемирного тяготения Ньютона. Заданы начальные положения и скорости точек. Требуется найти положения всех точек как функции времени. Эта задача не решена до сих пор. Более того, показано, что даже в случае трех тел помимо классических интегралов, существование которых следует из общих теорем об изменении количества движения, кинетического момента и кинетической энергии, дифференциальные уравнения движения не имеют других интегралов, которые выражались бы через алгебраические или через однозначные трансцендентные функции координат и скоростей точек.  [c.244]

Момент кориолисовых сил является лишь одной из составляющих момента, действующего на насосное колесо. Вторая составляющая этого момента вызывается изменением количества движения жидкости при переходе ее в насосное колесо из турбинного, имеющего несколько меньшую скорость движения (со — AQ). Согласно второму закону Ньютона  [c.91]

Найдем такую форму третьего закона Ньютона, в которой бы он выражался через новые понятия — импульс силы и количество движения. Для этого рассмотрим сначала изолированную систему, состоящую из двух тел с массами mi и /Па (рис. 4.20). Пусть в некоторый момент времени эти тела имеют скорости Vi и я в течение времени действуют друг на друга с силами Fi и F . Определим, как будут связаны друг с другом скорости Ui и 2, которые приобретут тела после такого взаимодействия.  [c.198]


Замечательным является то, что все найденные нами величины и законы полностью сохраняют свою силу для рассмотрения движений любых других тел, не относящихся к твердым. Законы Ньютона, уравнение моментов, законы сохранения количества движения и энергии с полным правом могут применяться к решению задач о движении жидких и газообразных тел, для расчета механических процессов в упругих средах. Во всех таких случаях к этим законам необходимо только добавлять уравнения, выражающие особые механические свойства этих сред, и учитывать особенности тех новых вопросов, которые могут возникнуть относительно движений в этих средах.  [c.283]

Доказательство. О)гласно второму закону движения Ньютона, результирующая сила должна вызвать изменение количества движения жидкости, занимающей в данный момент времени i часть трубки между сечениями АВ и СО, изображенными на рис. б.  [c.32]

Е—сила сопротивления воздуха д—ускорение силы тяжести йш—масса, извергнутая в промежуток времени с к—постоянное отношение массы оболочки (баки) к массе горючего масса оболочки отпадает от Р. с относительной скоростью нуль к остающейся массе Р. (IV—приращение скорости за время остающейся массы Р. На основании третьего закона Ньютона составляем диференциальное ур-ие движения Р. для случая ее вертикального подъема, исходя из условия, что количество движения в момент I равно количеству движения в момент плюс импульс сил  [c.40]

Книга содержит систематическое изложение теоретической механики и основ механики сплошных сред. Большое внимание уделено фундаментальным понятиям и законам механики Ньютона — Галилея, законам изменения и сохранения импульса, кинетического момента и энергии, уравнениям Лагранжа, Гамильтона и Гамильтона — Якоби для класса обобщенно-потенциальных сил, а также законам механики сплошных сред, на единой основе которых рассматриваются идеальная и вязкая жидкости, упругое тело. В книге подробно излагаются-, задача двух тел и классическая теория рассеяния, законы изменения импульса, кинетического момента и энергии относительно неинерциальных систем отсчета, теория линейных колебаний систем под действием потенциальных, гироскопических и диссипативных сил, метод Крылова — Боголюбова для слабо нелинейных систем, методы усреднения уравнений движения. Книга содержит большое количество примеров интересных для физиков, в частности рассматриваются примеры на движения зарядов в заданных электромагнитных полях, задачи на рассеяние частиц, колебания молекул, нелинейные колебания, колебания систем с медленно меняющимися параметрами, примеры из магнитогидродинамики. Книга рассчитана на студентов и аспирантов физических специальностей.  [c.2]

В основе вывода первых двух общих теорем динамики—количества движения и момента количества движения —лежит идея выделения из всех сил, приложенных к системе, внутренних сил взаимодействия меладу материальными точками системы. Внутренние силы в своей совокупности не могут влиять на такие суммарные меры движения, как главный вектор и главный момент количеств движения точек системы. Только внешние силы, дсйст-вующие на точки системы со стороны внешних тел, не принадлежащих к рассматриваемой системе, могут изменять главный вектор и главный момент количеств движения системы. В использовании этого свойства внутренних сил, представляющего собой одно из важнейших следствий третьего закона Ньютона, заключается главное значение двух первых o6uj,hx теорем динамики.  [c.105]

Теорема об изменении момента количества движения в приложении к одной материальной точке представляет собой простое следствие основного закона Ньютона. Это следствие оказывается полезным при решении некоторых задач динамики характер этих задач подсказывается формой уравнений (5) и (6).  [c.155]


Закон площадей — прообраз и частный случай общего закона моментов количеств движения — был установлен впервые Кеплером для движения планет. Кеплер показал, что его второй закон справедлив как для теории Коперника, так и для теорий Птолемея и Тихо Браге. Возможно, что это обстоятельство побудило Ньютона к дальнейшему обобщению. В Началах он доказал и то, что закон площадей для планетных орбит является следствием закона тяготения (планет к Солнцу) в принятой Ньютоном форме, и то, что этот закон справедлив при движении тела под действием любой силы постоянного направления, проходящей через неподвижный центр. Но переход к более общей закономерности не был напрашивающимся, так как момент силы относительно этого центра тождественно равен нулю и в случае, который рассматривал Ньютон. Этот переход был облегчен развитием статики — оперирование моментами (сил) относительно ося или точки как алгебраическими величинами стало там обычным благодаря трудам Вариньона. Все же новое обобщение закона площадей было получено только в работах 40-х годов XVIII в. Все эти работы связаны с задачами о движении тел на движущихся поверхностях. Подобные задачи ставились и в земной, и в небесной механике. Иоганн и Даниил Бернулли начали изучение таких вопросов для случая, когда движущаяся поверхность — наклонная плоскость. Клеро немало содействовал успеху в этой тогда новой области механики своими результатами по теории относительного движения. Вслед за ним Эйлер в большой работе О движениях тел по подвижным поверхностям от-  [c.125]

Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]

Из факта, устанавливаемого формулой (2.10.1), можно сделать и обратное заключение, а именно, если заставить конец стержня двигаться с постоянной скоростью, то позади фронта волны напряжения будут постоянными. Пусть, например, по концу стержня производится удар телом очень большой массы, движущейся со скоростью V. Тогда от конца пойдет фронт ударной волны со скоростью с, материальная скорость частиц за фронтом будет равна V по формуле (2.10.1) a — Evl . Нам осталось определить скорость распространения фронта волны с. Для этого выделим из рассматриваемого стержня участок длиной dx между сечениями i—1 и 2—2 (ряс. 2.10.2). Пусть в момент времени t фронт упругой волны проходит через сечение 1—1, в момент t + dt через сечение 2—2. Для этого нужно, чтобы dx = dt. Применим к выделенной части стержня второй закон Ньютона. В течение времени dt в сечении 1—1 действует сила oF, тогда как сечение 2—2 остается непапряженпым, следовательно, импульс силы равен oF dt. В начальный момент t вся выделенная часть была в покое, в момент t + dt вся она движется со скоростью V, следовательно, изменение количества движения есть  [c.71]

В связи с этим следует обратить внимание на различие между уравнениехм (115) и уравнениями, выражающими общие теоремы динамики системы, рассмотренные в предыдущих параграфах. Как мы видели выше, в уравнения, выражающие теоремы о количестве движения, о движении центра масс и о кинетическом моменте системы, внутренние силы не входят, но реакции связей, если они относятся к внешним силам, из этих уравнений не исключаются в уравнение же, выражающее теорему о кинетической энергии системы, внутренние силы войдут, так как работа внутренних сил вообще не равна нулю. Чтобы убедиться в этом, достаточно рассмотреть следующий простой пример пусть имеем систему, состоящую из двух материальных точек, притягивающихся по какому угодно закону (например, по закону Ньютона). Силы взаимного притяжения этих точек являются для рассматриваемой системы внутренними силами эти силы равны по модулю и направлены по прямой, соединяющей данные точки, в противоположные стороны. Ясно, что если под действием этих сил точки будут сближаться, то работа каждой силы будет положительна и, следовательно, сумма работ внутренних сил не будет равна нулю, а будет больше нуля.  [c.489]



Смотреть страницы где упоминается термин Закон Ньютона момента количества движени : [c.138]    [c.148]    [c.148]    [c.152]    [c.447]    [c.224]    [c.208]    [c.203]   
Газовая динамика (1988) -- [ c.33 , c.37 ]



ПОИСК



Закон Ньютона количества движения

Закон Ньютона,

Закон движения

Закон движения количества движения

Закон движения момента количества движени

Закон количества движения

Закон момента количества

Закон моментов

Закон моментов количеств движения

Законы количества движения и момента количеств движения

Количество движения

Количество движения. Закон количества движения

Момент количеств движения

Момент количества движени

Ньютон

Ньютона закон (см. Закон Ньютона)

Ньютона законы движения



© 2025 Mash-xxl.info Реклама на сайте