Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Маневр космический

Маневр космический 16 Метод неподвижной точки 114 Методика приближенная 209 и далее  [c.337]

Одной из основных задач механики космического полета является расчет маневров космического аппарата (КА). Маневром называют целенаправленное изменение параметров движения КА, в результате которого первоначальная траектория свободного полета начальная орбита) меняется на некоторую другую конечная орбита или траектория полета). Обычно маневр осуществляется с помощью двигательной установки. Длительность работы, направление вектора тяги и число включений двигателя зависят от начальной и конечной орбит. При расчете маневра необходимо его оптимизировать, т. е. определить такие условия проведения маневра, при которых расход топлива оказывается минимальным. Это — наиболее часто встречающийся критерий оптимальности, хотя в некоторых задачах рассматриваются и другие критерии, например время перелета с одной орбиты на другую, обеспечение высокой точности конечных (терминальных) параметров движения п др. Для некоторых маневров оказывается возможным использовать вместо двигательной установки (или для частичного уменьшения расхода топлива) аэродинамические силы, возникающие при движении КА в атмосфере планеты. Например, торможение КА в атмосфере при совершении посадки, частичное торможение КА при переводе его с подлетной гиперболической траектории на орбиту спутника планеты, поворот плоскости движения в процессе непродолжительного погружения в атмосферу и т. п.  [c.134]


РАЗДЕЛ [II МАНЕВР КОСМИЧЕСКИХ АППАРАТОВ  [c.91]

МАНЕВР КОСМИЧЕСКИХ АППАРАТОВ  [c.98]

Космические аппараты, стабилизированные вращением, могут обеспечить длительную ориентацию солнечных батарей на максимальную освещенность солнечными лучами. Такой способ ориентации является наиболее экономичным, его целесообразно использовать также для стабилизации законсервированных орбитальных станций. Вращающийся КА более равномерно освещается Солнцем, что обеспечивает внутри него более умеренный тепловой режим. Вращение может оказаться полезным и при подаче топлива к насосам двигательных установок перед выполнением маневра.  [c.7]

Уравнения движения центра масс космического аппарата стабилизированного вращением, при маневре  [c.54]

Важным вопросом является техника сборки орбитальных станций, которые, очевидно, будут предусматривать использование модульной структуры, составленной из секции КА, которые были ранее разработаны. Подобное стремление к унификации подсказывает и другое возможное направление реализации В частности, рационально взять за основу стандартные конструктивные блоки, масса и габариты которых обусловливаются данными определенных ракет-носителей. Выведенные на околоземную орбиту модули или блоки во многих случаях нецелесообразно оснащать индивидуальными двигательными установками и системами управления движением, необходимыми для сближения и стыковки. Можно представить принципиально иное решение проблемы. Отдельные модули или блоки будущей станции на первом этапе будут выводиться ракетами-носителями в заданный район космического пространства на определенные орбиты, где расстояния между ними могут измеряться километрами. Дальнейшую работу по сближению объектов и их сборке в единый комплекс можно выполнить специальным аппаратом, так называемым космическим буксиром. Большие запасы топлива для системы двигателей, специальные радио- и телевизионные системы позволят орбитальному буксиру совершать маневры вместе с блоками, присоединяя их к общей конструкции.  [c.263]

Системы угловой стабилизации не решают самостоятельных задач. Они обеспечивают нормальное функционирование систем управления движением центра масс при различных маневрах КА, а также способствуют успешной работе специального оборудования, устанавливаемого на аппаратах, с целью исследования космического пространства и земной поверхности.  [c.13]

Наконец, необходимо отметить подробное исследование межпланетных траекторий, которое недавно закончил Эрихе [23]. В этой работе рассматриваются некоторые классы важнейших космических маневров и их возможная роль в полетах пилотируемых космических кораблей к планетам.  [c.31]


Суш.ествует совокупность допустимых условий входа (или коридор входа), при выполнении которых космический аппарат может совершить маневр погружения в атмосферу  [c.135]

Требования к коридору входа. На межпланетном участке траектории перелета системы навигации, наведения и управления должны функционировать таким образом, чтобы обеспечить попадание аппарата в коридор безопасного входа. Корректирующие маневры пилотируемого космического корабля на траектории перелета к Марсу исследовались в работе [40]. Приведенные в этой работе данные позволяют сравнить найденные выше значения глубины коридора входа с требуемыми значениями, которые определяются возможностями системы управления на межпланетном участке траектории.  [c.147]

Импульсное приложение тяги характерно для всех известных типов перелетов с минимумом расхода топлива, если используются двигатели с постоянной скоростью истечения. Продолжительность полета космических аппаратов с двигателями большой тяги на активных участках обычно настолько меньше длительности пассивного полета,что при определении требуемого количества топлива целесообразно рассматривать в первом приближении активные участки как импульсные маневры.  [c.165]

Аналогичных случаев может быть много и при движении летательных аппаратов, в особенности космических, когда движение должно подчиняться требованиям, выражаемым неголономными уравнениями спуск на поверхность планеты, подавление излишних периферических вращений создание, наоборот, вращений, необходимых для выполнения того или иного маневра, или выполнения тех или иных научных исследований и т. д. Уравнения связей могут быть и нелинейными и высших порядков. Совсем недавно был установлен замечательный факт в кинематике движений твердого тела вокруг неподвижной точки (в сферическом движении). Оказалось, что характер сферического движения тела тесно связан с поведением вектора угловой скорости тела. В частности, могут быть такие сферические движения, при которых вектор мгновенной угловой скорости остается в одной и той же плоскости тела, проходящей через неподвижную точку.  [c.12]

В отличие от естественных космических тел космический корабль может изменить свою траекторию в космическом пространстве благодаря временному (импульсному) включению ракетного двигателя,. Это дает возможность перейти от первоначальной орбиты к другой, с совершенно иными параметрами. Такой переход носит название космического маневра.  [c.16]

Изучение различных видов космических маневров, выбор оптимального варианта космического маневрирования при соблюдении определенных требований (например, при минимальной затрате топлива) — актуальная задача динамики космического полета. Только применение космических маневров позволит в ближайшем будущем решить многие актуальные проблемы космонавтики, например запуск с Земли искусственных спутников Луны, Марса и Венеры.  [c.16]

В тесной связи с этой проблемой находится другая важная проблема — проблема встречи космических кораблей, то есть выбор такого маневра, который позволил бы одному из этих кораблей попасть в заданный момент времени в наперед заданную точку пространства с определенной, заданной скоростью.  [c.16]

Понятно, что изменение массы может иметь место не только на стадии выведения корабля в космическое пространство — это будет происходить и в самом космическом пространстве при включении ракетного двигателя для космического маневра.  [c.17]

Наряду с мощными ракетными двигателями, работающими на высококалорийном топливе в течение небольших промежутков времени, можно использовать и иные виды двигателей, источники энергии, которые создают весьма малую тягу, действующую на космический корабль в течение длительного времени. Уже сейчас разрабатываются проекты космических кораблей с ионными двигателями, кораблей, использующих давление солнечного света. В динамике космического полета рассматривается движение космических аппаратов с двигателями малой тяги, изучаются возможности использования малой тяги для осуществления космических маневров.  [c.17]


Обш,ие свойства коррекционных маневров при межпланетных полетах были исследованы в работе А. К. Платонова (1966). Им рассмотрены в линейном приближении характеристики коррекционного маневра на различных участках траектории полета к планетам. В качестве корректируемых параметров траектории используются момент и координаты точки пересечения космическим аппаратом картинной плоскости планеты. Предполагается, что коррекция производится путем мгновенного изменения вектора скорости полета в одной или нескольких точках траектории и что имеется полная информация о движении космического аппарата. Исследование проводится с целью уменьшения величины суммарного импульса коррекции.  [c.306]

Л1р —масса ракеты без топлива) называется характеристической скоростью ракеты или характеристической скоростью маневра [20]. Она определяет величину изменения скорости ракеты за счет расхода топлива, поэтому многие оптимальные задачи динамики космического полета связаны с минимизацией величины (8.3.05).  [c.712]

В случае, когда вдали от Земли и планет бортовой двигатель космического аппарата включается на короткое время для простого маневра, измеряемая инерциальной системой кажущаяся скорость будет из-за отсутствия сопротивления точно совпадать с характеристической скоростью маневра. Силы тяготения из-за их малости не скажутся на движении в течение короткого промежутка времени, и можно считать кажущуюся скорость практически равной приобретенному истинному приращению скорости. Подобные маневры необходимы для исправления траектории в соответствии с измеренными параметрами движения. Главная трудность будет при этом в том, чтобы необходимая скорость была сообщена в нужном направлении. Как это осуществляется, мы увидим ниже.  [c.83]

Полеты к Луне советских автоматических станций Луна-1 , Луна-2 и Луна-3 в 1959 г. происходили без использования маневра старта с орбиты. Первые два из них продолжались Р/г сут ( Луна-1 пролетела на расстоянии 5—6 тыс. км от поверхности Луны, Луна-2 впервые в истории достигла Луны), что требовало начальных скоростей, несколько превышавших параболическую, а третий — 2 /з сут и происходил по эллиптической траектории (обеспечившей облет Луны см. подробности в следующей главе). Также без старта с орбиты происходили в 1958— 1959 гг. и полеты в сторону Луны американских космических аппаратов Пионер-1 , Пионер-2 и Пионер-3 (первые два упали на Землю, преодолев лишь треть расстояния до Луны, а третий прошел на расстоянии 60 ООО км от Луны).  [c.201]

Управление при посадке должно осуществляться бортовой автономной системой, так как точность слежения за движением аппарата с Земли недостаточна и вдобавок сигналы с Земли будут запаздывать (радиосигнал от Земли до Луны и обратно идет 2,5 с). Лишь первый сигнал о начале маневров по спуску может даваться с Земли [3.91. Тормозная двигательная установка не может включаться по сигналу программного временного устройства, находящегося на борту космического аппарата, так как ничтожная ошибка в величине начальной скорости отлета с Земли, равная, например, 0,3 м/с, приведет к ошибке во времени встречи с Луной на 100 с, и торможение начнется на нерасчетной высоте, поскольку аппарат за это время пролетит примерно 260 км [3.10].  [c.212]

Осуществленный облет Луны является классическим примером успешного пертурбационного маневра, т. е. маневра по изменению для каких-либо целей траектории полета, совершаемого не с помощью ракетных двигателей, а с использованием поля тяготения небесного тела. Обычно пертурбационные маневры требуют особенно точного выведения космического аппарата на траекторию пассивного полета. В частности, полет станции Луна-3 требовал большей точности начальных данных, чем полет станции Луна-2 , попавшей в Луну в сентябре 1959 г.  [c.230]

Космические аппараты уже давно снабжаются корректирующими двигательными установками, которые доказали свою э( к-тивность. Мы выше отмечали трудности специального облета Луны в плоском варианте. Между тем такой пространственный маневр уже неоднократно совершался во время полетов советских космических аппаратов Зонд-5—8 , облетавших в 1968—1970 гг. Луну и совершавших затем пологий вход в земную атмосферу. При этом траектория корректировалась как до, так и после облета Луны (об этих экспериментах см. подробности в 3 гл. И).  [c.236]

Уменьшение угловой скорости вращения. Не всегда желательно поддерживать высокую скорость вращения, которая требуется при выполнении одного из маневров космической операции. Например, после выключения двигательной установки требуемая скоростьвращения может быть во много раз меньше, а в некоторых случаях вращение вообще желательно прекратить. В пассивных системах уменьшение скорости вращения осуществляется передачей кинетического момента космического аппарата двум или нескольким частям аппарата с небольшими массами, которые затем отделяются. Этот способ используется в устройстве, известном под названием йо-йо ), которое способно уменьшить угловую скорость вращения космического аппарата на любую желаемую величину вплоть до нуля (рис. 28 [26]).  [c.226]

Многократный облет Венеры — чрезвычайно эффективный метод для исследования Солнца с высоких гелиографических высот. Для этого пролет мимо Венеры должен совершаться в точках, в которых ее орбита пересекает плоскость солнечного экватора. Еще лучше следующий сложный маневр космический аппарат пролетает мимо Венеры, чтобы затем выйти на высокие гелиографические широты, пролетев сквозь сферу действия Земли. Теперь, разумеется. Земля должна находиться в точке пересечения своей орбиты с плоскостью экватора Солнца, и ее облет должен быть многократным, чтобы наклонение орбиты космического аппарата постепенно увеличивалось. Без Венеры это требует начального выхода на внешнюю эллиптическую орбиту с импульсом скорости в афелии, который бы сделал период обращения равным земному [4.48].  [c.389]


Маневром космического аппарата называется преднамеренное изменение параметров его движения с помощью какой-либо управляющей силы, имеющее целью получить тзкие элементы его орбиты, которые удовлетворяли бы поставленной задаче В качестве управляющей силы могут быть использованы сила тяги реактивного двигателя, аэродинамическая сила, сила светового давления и другие силы негравитационного происхождения.  [c.91]

Межорбитальные и локальные маневры космических аппаратов  [c.258]

В недавней статье [57] указано, что концепция использования светового давления солнечных лучей проскальзывала у Ф. А, Цандера еще в 20-е годы. Однако, по-настоящему прорабатываться эта идея стала лишь в семидесятые годы в рамках программ полета к ко>гете Галлея в США и в СССР (проект Регата ), Ученые пытались вернуть термину космоплавание его изначальный смысл в рамках так называемого Колумбовского проекта, создаваемого по инициативе конгресса США и связанного с празднествами по случаю 500-летия открытия Америки. Колумбовская юбилейная комиссия, сформированная президентом США, объявила необычный конкурс на лучший космический парусник для полета к Марсу. Условия предполагаемого полета былй сформулированы в декабре 1988 года и сводятся к следующим корабли участников должны быть выведены на начальную орбиту в 1992-93 годах, оттуда, подняв паруса, двигаться по раскручивающейся спирали к Луне после завершения маневра в поле тяготения Луны парусники должны взять курс на Марс и постараться как можно быстрее добраться до планеты. Все как в рассказе А. Кларка Работа над проектами была столь захватывающей, что в предисловии к советскому  [c.168]

Таким образом, у ракетных двигателей есть две основные области ирименения во-нервых, кратковременное создание больгпой тяги, когда бы в ней не возникала необходимость на пилотируемых самолетах или реактивных снарядах, и, во-вторых, полет на высотах, где нет достаточного количества кислорода. Ракетные двигатели широко используются для взлета с ускорителем и ускорителей маневра пилотируемых самолетов, а также для ракет-носителей нри запуске реактивных снарядов. Немецкое оружие Фау-2 двигалось исключительно с помощью ракетного двигателя, и в нескольких странах разрабатываются аналогичные системы вооружений на стыке баллистики и авиации. Наконец, космические путешествия с помощью кораблей с ракетными двигателями являются популярной темой научной фантастики и серьезных научных исследований.  [c.187]

Коррекция траектории. Для перевода космического аппарата на новую орбиту используются корректируюшие двигатели. При орбитальном маневре кораблю сообщают приращение скорости v -> v = v + Av в точке г. Теперь положение орбиты в пространстве определяется вектором момента М и вектором Лапласса  [c.49]

Сложность задачи о коррекции определяется необходимостью минимизировать величину суммарного расхода топлива или, что то же самое для систем с ограниченной скоростью истечения струи, суммарной характеристической скорости коррекции при наличии случайных погрешностей определения орбиты и заведомо негауссовых ошибок исполнения корректирующих маневров в условиях, вообще говоря, падающей эффективности коррекции с течением времени. Поэтому, если коррекция производится достаточно поздно, может потребоваться большой корректирующий импульс и значительный дополнительный вес на борту космического аппарата. Ранняя коррекция может оказаться более экономной, однако недостаточная точность определения параметров орбиты к моменту ее выполнения может привести к недостаточной точности коррекции и к необходимости ее повторного выполнения.  [c.304]

НОЙ степени продвинута на пути к своему решению. Основные усилия были направлены на отыскание оптимальных режимов коррекции, исследование обш их свойств коррекционных маневров, выбор удобных корректируемых параметров, построение технически простых методов коррекции, отыскание приближенных критериев оптимальности, позволяюш их решить задачу простыми средствами, исследование с помощью модельных задач оснс вных эффектов и закономерностей при оптимальной неидеальной коррекции, на строгую постановку задачи об оптимальной неидеальной коррекции и отыскание методов ее решения. Об успехах советских ученых в области практических приложений теории оптимальной коррекции говорит проведение коррекций орбит космических аппаратов, запускаемых Советским Союзом к Луне и планетам Солнечной системы (см. Исследования верхней атмосферы и космического пространства . Доклад КОСПАР, 9-й пленум, Вена, 1966).  [c.319]

Тогда полное приращение скорости космического аппарата в результате маневра в целом выражается соотнощеннем  [c.736]

В книге в доступной форме, без применения сложного математического аппарата, но вместе с тем вполне строго излагаются основы космодинамики — науки о движении космических летательных аппаратов. В первой части рассматриваются общие вопросы, двигательные системы для космических полетов, пассивный и активный полеты > поле тяготения. Следующие части посвящены последовательно околоземным полетам, полетам к Луне, к телам Солнечной системы (к планетам, их спутникам, астероидам, кометам) и за пределы планетной системы. Особо рассматриваются проблемы пилотируемых орбитальных станций и космических кораблей. Дается представление о методах исследования и проектирования космических траекторий и различных операций встречи на орбитах, посадки, маневры в атмосферах, в гравитационных полях планет (многопланетные полеты и т. п.), полеты с малой тягой и солнечным парусом и т. д. Приводятся элементарные формулы, позволяющие читателю самостоятельно оценить начальные массы ракет-носителей и аппаратов, стартующих с околоземной орбиты, определить благоприятные сезоны для межпланетных полетов и др. Книга содержит большой справочный числовой и исторический материал.  [c.2]

Величина реактивного ускорения показывает, для каких космических операций может быть применен двигатель того или иного типа. Например, для резких маневров нужен двигатель, создающий значительное реактивное ускорение. Двигатель с малым реактивным ускорением не может даже оторвать космический аппарат от поверхности Земли. Условно все двигатели могут быть разделены на два класса двигатели большой тяги (точнее, большого реактивного ускорения), создающие реактивное ускорение, превышающее ё =9,8 м/с , и двигатели малой тяги (точнее, малс о реактивного ускорения), создающие реактивное ускорение, меньшее д. (Чаще всего под двигателями малой тяги понимают двигатели, создающие реактивные ускорения в тысячи раз меньшие д.)  [c.27]

Предположим, что где-то в заданной точке траектории намечено провести коррекцию. Сначала оптический датчик вращающегося космического аппарата просматривает небо. Вот он обнаружил Солнце. Реактивные сопла затормаживают вращение. Ориентация на Солнце уточняется. Теперь одна ось аппарата направлена на Солнце. Если бы целью маневра ориентации было наблюдение Солнца, то на этом можно было бы остановиться. Но включить корректирующий двигатель нельзя, так как аппарат сохранил способность поворачиваться вокруг направления на Солнце. Для остановки вращения надо, чтобы другой оптический датчик захватил иное небесное светило, например Луну (если она близка), яркие звезды — Сириус или Канопус ), или чтобы остронаправленная бортовая параболическая антенна захватила специально посылаемый с Земли радиосигнал (последний способ имеет особое значение для дальней радиосвязи с Землей). Теперь появится новая неподвижная ось (направленная на Луну, или на Сириус, кл I на Канопус, или на Землю) и всякое вращение аппарата будет остановлено. По сигналу с Земли может быть включен корректирующий двигатель, причем во время его работы система ориентации будет удерживать аппарат в заданном положении.  [c.87]



Смотреть страницы где упоминается термин Маневр космический : [c.108]    [c.110]    [c.6]    [c.537]    [c.427]    [c.271]    [c.25]    [c.146]    [c.546]   
Элементы динамики космического полета (1965) -- [ c.16 ]



ПОИСК



Маневр

Межорбитальные и локальные маневры космических аппаратов



© 2025 Mash-xxl.info Реклама на сайте