Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Покрытия, коррозия хромовые

На рис. 4.20 приведены результаты испытания хромированных с одной стороны образцов в виде опытных точек как уменьшение массы на единицу поверхности образца от времени при различных температурах. На этом же рисунке пунктирными линиями нанесены уменьшения удельной массы тех же образцов при условии, что коррозия на хромированной поверхности отсутствует, т. е. разность Ад при одном и том же времени и температуре равна интенсивности коррозии хромового покрытия. При температуре до 450 °С зола эстонских сланцев не способствовала коррозии труб с хромированным покрытием. При температурах 500 °С и выше картина существенным образом менялась. Сопротивление коррозии наблюдалось до исчезновения на металле хромированного слоя. Следовательно, увеличение срока службы трубы возможно на ограниченное время. Таким образом, до температуры 450 °С хромированный слой на металле в продуктах сгорания сланцев предохраняет трубу от интенсивной коррозии. Объясняется это 152  [c.152]


Рис. 7,7 показывает, как при одном слое никеля начинает развиваться питтинг из небольших пор или других нарушений покрытий в хромовом верхнем покрытии [22], Эти питтинги имеют сначала полусферическую форму. Показанные на рисунке питтинги образовались за 6 мес в промышленной атмосфере на меди, покрытой одним слоем никеля и одним слоем хрома (автомобильный бампер). Однако в двухслойном никелевом покрытии питтинг развивается вдоль поверхности и в меньшей степени в глубь металла рис. 7.8 показывает характер коррозии на двухслойном никелевом покрытии с одним слоем хрома после 58 мес службы.  [c.437]

На фиг. 2 приведена диаграмма коррозии хромовых покрытий в камере при распылении 3-процентного раствора поваренной соли.  [c.70]

В последнее время возникла тенденция покрывать сталь более экономичным комбинированным покрытием, состоящим из нижнего хромового слоя (0,008—0,01 мкм), находящегося на нем слоя оксида хрома и наружного органического покрытия. Таким образом в США защищают 16 % всей жести, выпускаемой для консервной тары [18]. Система обеспечивает следующие преимущества лучшую сохранность продуктов, стойкость к воздействию сульфидов, хорошую адгезию и отсутствие подтравливания наружного органического покрытия, стойкость наружной поверхности тары к нитевидной коррозии. Однако это покрытие трудно поддается пайке, что ограничивает его использование для консервных банок.  [c.241]

Формула (4.21) описывает коррозию хромированных труб, работающих в НРЧ, а также в конвективных газоходах. Это следует из рис. 4.38, где приведена зависимость глубины коррозии хромированных труб от параметра коррозионной стойкости хромового покрытия (линия /), рассчитанная на основе формулы (4.21), а также экспериментально установленные глубины коррозии хромированных труб, работающих как в НРЧ, так и в конвективных поверхностях нагрева.  [c.185]

Эффект хромирования проявляется более сильно у труб НРЧ, поскольку здесь интенсивность коррозии хромированных труб из-за более низкой температуры металла меньше (в сравнении с трубами в пароперегревателе). Хромирование уменьшает глубину коррозии труб НРЧ в среднем не менее чем в 50 раз. После испытания хромированных труб в НРЧ в течение 16 300 ч толщина хромового покрытия в зависимости от температуры металла уменьшилась на 0,004—0,021 мм.  [c.186]

Комплексные покрытия наносятся с целью защиты изделий из никель-хромовых сплавов от газовой коррозии при температурах 900—1000° в продуктах сгорания сернистого топлива и паров морской воды.  [c.146]

ЗАЩИТА ОТ КОРРОЗИИ НАСОСНО-КОМПРЕССОРНЫХ ТРУБ ДИФФУЗИОННЫМИ ХРОМОВЫМИ ПОКРЫТИЯМИ  [c.180]


Декоративные покрытия состоят из комбинации слоев меди, никеля, хрома общей толщиной 20—60 мкм. Применение твердых хромовых покрытий позволяет существенно улучшить износостойкость деталей машин и одновременно повысить их стойкость против коррозии.  [c.74]

Возможным средством решения проблемы образования локализованной коррозии из-за несплошности хромового покрытия является уменьшение плотности тока на анодных участках корродирующей поверхности путем создания огромного количества микротрещин на хромовом покрытии. После этого коррозия в любой данной точке нижележащего слоя металла замедляется,  [c.93]

Рис. 3.9. Защита от коррозии разных видов никель-хромовых покрытий / — обычный Сг 2 — блестящий Ni 3 — основной слой стали 4 — полублестящий N1 5 — Рис. 3.9. Защита от коррозии разных видов никель-<a href="/info/6718">хромовых покрытий</a> / — обычный Сг 2 — блестящий Ni 3 — основной слой стали 4 — полублестящий N1 5 —
Хромовые покрытия непригодны для защиты от коррозии в сильно действующих кислотах (например, соляной), удаляющих покрытие с основного слоя.  [c.113]

Отказ элементов, испытывающих нагрузки при сборке или эксплуатации, может произойти, если покрытие подвержено коррозии под напряжением (как, например, медь или медные сплавы в условиях аммиачной среды). Основной металл, подверженный коррозии под напряжением, может быть полностью защищен соответствующим металлическим покрытием. С этой целью, например, на сплавы алюминия высокой прочности наносят покрытие из чистого алюминия или цинка. При динамических нагрузках, вызывающих изгиб детали, хрупкое покрытие может разрушиться, и основной металл в дальнейшем окажется незащищенным. Так, под действием изгиба (например, в автомобильных бамперах или дисках втулок) толстослойное хромовое покрытие получит трещины, которые затем распространятся до основного слоя стали, разрушая подслой никелевого покрытия.  [c.129]

Обычно пористость ухудшает эксплуатационные качества металлических покрытий, но в некоторых случаях (микротрещины или микропористость хромовых покрытий) она важна с точки зрения функционирования защитной системы. Для получения представления о несплошностях покрытия необходимо проводить контроль качества. Большинство методов контроля являются разновидностью ускоренных испытаний на коррозию, которые выявляют поры по образованию окрашенных продуктов коррозии подслоя металла на участках, где этот металл подвергается коррозии в несплошностях покрытия.  [c.147]

Наилучшие результаты в опытах с пастой получены для покрытий, нанесенных на стальные изделия. Проникновение коррозии в основной металл выявляется в виде коричневых пятен на слое белой пасты, нанесенной на испытываемую поверхность. Коррозия никелевых или медных подслоев проявляется в виде зеленых или темно-коричневых пятен в местах трещин или точечных отверстий в верхнем хромовом покрытии. Однако на изделиях с покрытиями цинковыми сплавами продукты коррозии цинка, имеющие белый цвет, недостаточно заметны, а вздутия при коррозии, характерные для покрытий этого типа, в этом испытании не фиксируются.  [c.161]

Целенаправленное наблюдение за поведением испытуемых пастой образцов часто может давать большую дополнительную информацию. Так, появление и распространение продуктов коррозии зеленого цвета может свидетельствовать о микро- или макротрещинах или порах на хромовом покрытии, нанесенном на никель. О наличии или отсутствии медного покрытия на сложном покрытии можно судить по образованию продуктов коррозии меди.  [c.161]

Например, результаты статических испытаний свидетельствовали о быстром потускнении поверхности пористых хромовых покрытий в сильно загрязненной среде, в связи с чем подвергалась сомнению возможность практического использования этих покрытий. В действительности при эксплуатации автомобилей данный вид повреждения происходит редко. Следовательно, для этих покрытий жесткие статические испытания можно считать ускоренными, хотя и очень длительными. Предполагают, что степень износа пластмассы с нанесенным на нее покрытием, обусловленная распространением язв по поверхности при общей коррозии, значительно больше в статических опытах при воздействии загрязненной среды, чем в реальных условиях.  [c.165]


Микройсследования шлифов проработавшего хромированного слоя показали существование полосы серого цвета между наружным (запыленным) несплошным слоем и основным хромовым покрытием. Можно предполагать, что этот слой состоит из имеющего хорошие защитные свойства окисла хрома. Рост толщины такого слоя за 6530 ч работы составил около 0,010 мм, а за 16 300 ч — 0,015 мм. После удаления с поверхности проработавших труб оксидов, в жидком натрии при пропускании аммиака, такой оксидный слой исчезает, а толщина хромированного покрытия остается такой же, как и в исходном состоянии. Таким образом, можно предположить, что хромированную трубу от интенсивной коррозии защищает тонкий оксидный слой, который, отсутствуя в исходном состоянии, образуется во время работы труб при высокой температуре. Отсюда следует, что коррозия хромового слоя на трубе в продуктах сгорания мазута контролируется диффузионным обменом. О диффузионном характере коррозии свидетельствуют и низкие значения показателя степени окисления металла, который при температуре 600 °С равен 0,45, а при более низких температурах металла еще меньше.  [c.186]

Срок службы антикоррозионной бумаги УНИ зависит от ряда факторов, наиболее важными из которых являются тщательность подготовки поверхности металлоизделия к консервации, соответствие упаковочного материала нормативно-технической документации (количество ингибитора в бумаге, физико-механические показатели материала, его влагопрочностьи паропроницаемость), наличие барьерного покрытия и его вид, а также условия последующего хранения и транспортировки. В табл. 27 представлейк средние значения сроков хранения упакованных в антикоррозионную бумагу УНИ металлоизделий в зависимости от вида барьерного покрытия и степени коррозионной агрессивности атмосферы согласно СТ СЭВ Коррозия металлов. Классификация коррозионной агрессивности атмосферы (легкие сроки хранения — Л, средние — С, жесткие — Ж, очень жесткие — ОЖ), применительно к стали и чугуну, стали с неметаллическим неорганическим покрытием, а также стали и чугуну с металлическим покрытием (никелевым, хромовым — без подслоя меди).  [c.108]

Химическая активность электроосаждаемых осадков никеля зависит от чистоты осадков. Блестящий никель, содержащий серу, корродирует быстрее, чем полублестящий или матовый. Это свойство используется при осаждении двухслойных покрытий, в которых тусклый или полублестящий никель примыкает к основному металлу, а внешний слой блестящего никеля находится под хромовым покрытием. Коррозия в этих слоях никеля распространяется преимущественно по верхнему (блестящему) слою, а коррозия полублестящего слоя замедляется за счет некоторого продольного pa npo tpaHennH коррозионной язвы по верхнему слою (рис. 4.1). За счет сложного состава покрытия такого рода можно более чем в два раза снизить скорость проникающей коррозии в слое толщиной 25 мкм, если сверху нанести декоративное хромовое покрытие. При использовании внешнего хромового слоя с микротрещинами можно добиться уменьшения коррозии на Vs или меньше.  [c.118]

Для повышения коррозионной стойкости, износостойкости, а также улучшения внешнего ввда изделий в промышленности широко используется злектролитическое нанесение металлических покрытий на поверхность сталей и сплавов. Покрытия бывают хромовые, никелевые, никель-кадмиевые, цинковые и др. Все покрытия в зависимости ot величины и знака стандартного электродного потенциала металла покрытия и защищаемого металла делятся на анодные и катодные. Анодные в гальванопаре с защищаемым металлом являются анодом и активно растворяются, тормозя при этом коррозию защищаемого металла. К ним, например, относятся цинковые, коррозионно разрушающиеся в гальванопаре со сталью. Катодные в гальванопаре с основным металлам служат катодами и защищают металл, так как более коррозионно стойки. При локальном разрушении таких покрытий защищаемый металл, будучи анодом, интенсивно т рро-дирует.  [c.117]

Скорость коррозии твердого хромового покрытия существенно зависит от скорости движения воды при наличии в ней кислорода и высоких значений pH. При указанных условиях скорость коррозии хромового покрытия с увеличением скорости движения воды от 0,005 до 9 л1/сек может юзрастать примерно в восемь раз.  [c.287]

Покрытия, коррозия латунные 608 магниевые 586, 587 медные 586, 587, 684 медь-никелевые 608, 684 медь-оловянные (спекулум) 684 никелевые 586, 587, 608, 684 оловянные 608 свинцовые 586, 608 фторопластовые 783, 785 хром-никелевые 608 хромовые 608 цинковые 586, 587, 600, 608 Поляризационные кривые железа (схема) 76 карбонильного, содержащего 0,27% С 89  [c.829]

Защиту железоуглеродистых сплавов против коррозии хромовое покрытие может дать только механическую, потому что, хотя хром более электроотрицателен, чем железо, но благодаря свойству пассивирования потенциал хрома становится положительнее потенциала железа. Поэтому для надежной защиты стальных изделий требуется максимальная беспористость хромового покрытия. Однако одним из самых крупных недостатков хромовых отложений является их весьма большая пористость, что при условиях, способствующих коррозии, может вызывать сильное разрушение основного металла.  [c.185]

Так как при этом последний четвертый тонкий слой никеля содержит повышенное количество включений непроводящих частиц серы, то покрытие хромом получается пронизанным очень большим числом мелких пор (от 20 000 до 50 000 на 1 см ) независимо от толщины слоя хрома и плотности тока. Вследствие множества пор в хромовом покрытии коррозия нижележащего слоя никеля как анода в образующихся при этом микрогальваноэлементах (хром — катод) протекает равномерно по всей поверхности и, таким образом, проникновение ее вглубь замедляется.  [c.48]


Защитная способность хромового локрытия определяется тем, что по отношению к обычно защищаемому металлу — стали — он является катодом при довольно значительной разности потенциалов этой пары (например, в 3%-ном растворе КаС1 около 0,5 В). Как и при других катодных покрытиях, защитная способность электролитического хрома определяется его пористостью, которая зависит от состава электролита, режима хромирования и толщины покрытия. Пористость хромового покрытия может быть полностью устранена подбором условий хромирования. Беспористое покрытие хорошо защищает от коррозии.  [c.41]

Если процесс электроосаждення ингибируется, то металл покрытия становится более твердым, менее пластичным и увеличивается его временное сопротивление. Твердость металлических покрытий, полученных из кислых растворов аквокатионов, возрастает при повышении pH примерно до значения, при котором происходит осажденне гидроокиси. Одновременно осаждающаяся окись действует как добавка, способствуя образованию мелкозернистых твердых покрытий, Твердые никелевые покрытия, применяемые в машиностроении, получают в ваннах с высоким значением pH. Многие другие металлы также могут быть нанесены в очень твердой форме электроосаждением из ингибированных ванн, но такие покрытия склонны к охрупчиванию под действием высоких внутренних напряжений, так что реальный предел прочности на растяжение для таких покрытий трудно определить. Пластичность непрерывно падает с повышением твердости, поэтому покрытие становится все более чувствительным к повреждению при ударных воздействиях, понижая тем самым свои защитные свойства в случае, если оно является катодом по отношению к подложке. Некоторые случаи применения гальваностегии рассчитаны на получение необычайно твердых износостойких видов покрытий из коррозионно-стойких металлов. Тонкие покрытия хрома п никеля часто наносят на изделия из стали с целью одновременного достижения высокой стойкости к износу и к коррозии. Толстые, или машиностроительные, гальванические хромовые покрытия постоянно растрескиваются в процессе электроосаждения, но тут же вновь зарастают, так что ни одна из трещин не проходит насквозь через все покрытие. Толстые хромовые покрытия практически не обладают пластичностью и вследствие наличия в них дефектов структуры имеют низкую эффективную прочность. Эти покрытия лучше служат на жестких подложках.  [c.353]

Катодные покрытия, имеющие более положительный электродный потенциал, чем потенциал углеродистой стали, защищаю сталь только механически, пока покрытие сплошное. Из таких покрытiii i представляют интерес никелевые, хромовые и свинцовые покрытия. Никелевые покрытия обладают стойкостью в щелочных средах ц нашли применение для защиты ванн при элекгро шзе воды. Никелевые и хромовые покрытия служат также хорошей защитой от атмосферной коррозии.  [c.320]

Никель чувствителен к агрессивным воздействиям, особенно в промышленной атмосфере. Из-за потускнения металла ве едст-вие образования пленки основного сульфата никеля, уменьшающего зеркальный блеск поверхности, покрытия постепенно теряют отражательную способность [4]. Для того чтобы уменьшить потускнение, на никель электроосаждением наносят очень тонкий (0,0003—0,0008 мм) слой хрома. Отсюда возник термин хромовое покрытие , хотя в действительности оно в основном состоит из никеля. Оптимальные условия защиты достигаются, если в покровном хромовом слое образуются микротрещины. Чтобы получить этот эффект, в гальванические ванны для электроосаждения хрома вводят соответствующие добавки. Тонкий никелевый слой, осажденный из электролита, содержащего блескообразователи (обычно соединения серы), в свою очередь наносится на вдвое или втрое более толстый матовый слой, электроосажденный из обычной ванны никелирования. Многочисленные трещины в хроме способствуют инициации коррозии во многих местах поверхности, что уменьшает в конечном итоге глубину коррозионных разрушений, которые в противном случае протекали бы в нескольких отдельных точках. Блестяпщй никель, содержащий небольшие количества серы, является анодом по отношению к нижнему слою никеля, в котором серы меньше, и поэтому выступает в качестве протекторного покрытия. Развитие любого питтинга, образующегося под хромовым покрытием, происходит в основном вширь, а не за счет роста в глубь никелевых слоев. Таким образом, предотвращается коррозия основного металла. Система многослойных покрытий обладает более высокой защитной способностью, чем однослойные хромовые или никелевые покрытия той же толщины [51.  [c.234]

Сплавы, обладающие более устойчивой пассивностью, особенно в присутствии ионов хлора, например нержавеющие хромоникелевые стали аустенитного класса, легированные молибденом, например сталь марки Х18Н12МЗТ, а также титан и хром обладают высокой стойкостью к щелевой коррозии. Благодаря высокой стойкости хрома можно рекомендовать хромовые покрытия для защиты от щелевой коррозии.  [c.207]

Из металлических покрытий для защиты от коррозии наиболее широко применяют цинковые, алюминиевые, хромовые, никелевые покрытия (табл. 30), из неметаллических — конверсионные (фосфатные, оксидные, хроматные, оксидофосфатные).  [c.51]

Интенсивность коррозии нехромированных труб пароперегревателя мазутного котла сложным образом зависит от температуры продуктов сгорания, т. е. от места расположения труб в газоходе котла. В отличие от изложенного, интенсивность коррозии хромированных труб не имеет существенной зависимости от температуры газа. Основным параметром, определяющим глубину коррозии труб с хромовым покрытием в заданный момент времени, является температура металла. Глубина коррозии труб из стали 12Х1МФ с диффузионным покрытием в продуктах сгорания мазута выражается формулой  [c.185]

Одним из способов зап1иты от коррозии насосно-компрессорных труб является нанесение диффузионных хромовых покрытий.  [c.180]

Коррозионные испытания термохромированных образцов в течение 2357 час. в указанных выше условиях показали, что термохромированная сталь марок Ст.45 и 36Г2С в условиях сред газоконденсатных скважин практически не корродирует (скорость коррозии составляет 0.001—0.0009 мм/год), что позволяет отнести диффузионные хромовые покрытия по десятибальной шкале коррозионной стойкости металлов (ГОСТ 5272—50) к группе совершенно стойких покрытий.  [c.186]

Рассмотрена стадия процесса коррозии одно- и двухфазных металлических покрытий в расплавах щелочных металлов, для которой лимитирующим процессом является диффузия металла покрытия. Получены аналитические решения, с помощью которых можно прогнозировать долговечность рассматриваемых покрытий для ряда конкретных условий зксплуатации в расплавах щелочных металлов. Проведенная экспериментальная проверка на примере коррозии двухфазного хромового покрытия на армко-железе в конвективном потоке натрия показала удовлетворительное соответствие между расчетными и зкспери-нентальными данными. Дит. — 2 назв., ил. — 3.  [c.260]

Слабый рост микрогрибов в виде прорастаний конидий с образованием коротких неветвящихся гиф наблюдается на цинковых покрытиях ( ephalosporium sp.) независимо от метода нх получения. Суммарный эффект разрушения в результате биокоррозии больше у цинковых покрытий, полученных из цианистого электролита. На хромовых блестящих покрытиях наблюдается аналогичная картина с прорастанием, в основном ladosporium sp. Незначительным изменениям (потемнение поверхности с образованием легкого налета продуктов коррозии) подвергаются цинковые, кадмиевые, медные и комбинированные медь — никель — хромовые покрытия.  [c.36]


Рис. 1.18. Точечная коррозия блестящего никелевого покрытия (а) в несплош-ности хромового покрытия, проникающая до основного материала — стали,, и двойное никелевое покрытие (б), в котором полублестящее никелевое покрытие (при низком содержании серы) имеет протекторную защиту благодаря верхнему блестящему никелевому покрытию (при высоком содержании серы) Рис. 1.18. <a href="/info/101173">Точечная коррозия</a> <a href="/info/271008">блестящего никелевого покрытия</a> (а) в несплош-ности <a href="/info/6718">хромового покрытия</a>, проникающая до <a href="/info/121527">основного материала</a> — стали,, и двойное <a href="/info/6714">никелевое покрытие</a> (б), в котором полублестящее <a href="/info/6714">никелевое покрытие</a> (при низком содержании серы) имеет <a href="/info/130938">протекторную защиту</a> благодаря верхнему <a href="/info/271008">блестящему никелевому покрытию</a> (при высоком содержании серы)
Тонкое хромовое покрытие содержит мельчайшие несплош-ности, из-за которых коррозия проникает в нижние слои металла. В результате этого возникает местная коррозия. Попытка устранить несплошности за счет увеличения толщины хромового покрытия приводит к образованию скрытых макротрещин, так как хромовое покрытие обладает высокими внутренними напряжениями (рис. 3.7). Изменение состава электролита хромовой кислоты и условий электроосаждения позволяет немного увели-  [c.93]

Рассмотрим механизм защиты от коррозии разных типов систем покрытия никель + хром. В системе, изображенной на рис. 3.9, а, подслой блестящего никеля, расположенный под дефектом хромового покрытия, подвергается интенсивной коррозии из-за высокой плотности тока в районе этого дефекта (малая площадь анода и больщая площадь катода), что способствует дальнейшему направленному и ускоренному действию коррозии на основной слой после разрушения никеля. В системе, показанной на рис. 3.9, б, коррозионная язва распространяется вглубь слоя блестящего никеля, так как он корродирует быстрее, чем слой полублестящего никеля. Проникновение коррозии в этот слой замедляется с последующим увеличением защитных свойств основного металла. С ростом числа несплошно-  [c.98]

Хромовые покрытия в виде электроосаждаемых осадков остаются фактически инертными при атмосферном воздействии или погружении в воду. Из-за высокой степени сопротивляемости действию коррозии и потускнению, оптимального цвета и блеска хром используется, главным образом, для декоративной  [c.111]

Многие исследователи применяли подкисление напыляемой соли. Свиндом и Стивенсон пробовали добавлять серную кислоту в хлористый натрий во время испытания с прерывистым разбрызгиванием, предварительно вводя сульфат, присутствующий в атмосфере промышленной среды. Однако их метод не нашел широкого распространения. В 1Й5 г. Никсон предложил вводить в соль при непрерывном напылении уксусную кислоту. Испытание проводилось в камере при температуре 35° С. Непрерывное напыление 5%-ным раствором хлористого натрия, подкисленным уксусной кислотой до pH = 3,2, позволяло выявить качество никель-хромовых покрытий и достаточно точно воспроизвести вид коррозии, происходивший в реальных условиях. Однако испытание систем пористых хромовых покрытий давало некоторые погрешности. Продолжительность испытаний, составлявшая от 8 до 114 ч, явилась значительной преградой на пути  [c.158]


Смотреть страницы где упоминается термин Покрытия, коррозия хромовые : [c.126]    [c.61]    [c.32]    [c.152]    [c.119]    [c.160]    [c.162]    [c.343]   
Коррозия и защита от коррозии (1966) -- [ c.608 ]



ПОИСК



Коррозия покрытий

Покрытие хромовое

Ч хромовый



© 2025 Mash-xxl.info Реклама на сайте