Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Турбулентность акустическая

Были исследованы аэродинамические характеристики турбулентных акустически возбужденных затопленных струй, истекающих из сопел некруглого поперечного сечения. В качестве линейного размера таких струй принимался эквивалентный диаметр некруглого сопла, выходная площадь поперечного сечения которого равна площади круглого сопла.  [c.105]

Колебания при случайных нагрузках. Нередко тонкие пластинки и оболочки находятся под действием атмосферной турбулентности, акустического излучения от работающих двигателей и т. д., т. е. подвержены случайным нагрузкам, возбуждающим колебания в широком диапазоне спектра. Большая плотность собственных частот колебаний  [c.256]


Особое место в экспериментальных исследованиях интенсивно закрученных вихревых офаниченных течений, в том числе и в камере энергоразделения вихревых труб, занимает изучение пульсаций термодинамических параметров и, в частности, давления, формирующего звуковое поле, излучаемое вихревыми трубами. В соответствии с санитарно-гигиеническими требованиями этот отрицательно влияющий на окружающих фактор должен быть максимально снижен. В то же время должна присутствовать очевидная взаимосвязь взаимодействия акустических колебаний с турбулентной микроструктурой потока, а, следовательно, и со всеми явлениями переноса, ответственными в коне-  [c.117]

В последние годы при исследовании шума дозвуковых турбулентных струй обнаружены новые явления, что позволило уточнить существующие представления о при[юде и закономерностях турбулентного шума и наметить пути его снижения. Было, в частности, показано, что шум турбулентной струи определяется не только начальными параметрами истечения (начальные профили скорости, энергии и масштаба турбулентности), но и влиянием наложенного акустического поля. Оказалось, что если не учитывать влияние самих установок и различных технических устройств, находящихся в акустически возбужденном состоянии, то их аэродинамические и акустические характеристики могут заметно отличаться от соответственных характеристик чистой турбулентной струи [3].  [c.126]

Эффект интенсификации турбулентного перемешивания реализуется при вполне определенном пороговом уровне звукового давления в акустическом поле, усиливаясь с возрастанием уровня звукового давления до наступления насыщения, после чего дальнейшее увеличение интенсивности воздействующего звука не приводит к усилению эффекта.  [c.128]

В случае, когда давление газа в сосуде мало, а скорость потока велика, в регистрируемом сигнале могут отмечаться шумы вследствие турбулентности потока и соударения частиц, содержащихся в нем, с телом трубы. Во избежание этого регистрацию акустической эмиссии следует начинать при величинах давления, составляющих не менее 30% от испытательного.  [c.180]

Так как жидкость считается несжимаемой, то механизм распространения этих возмущений не связан с упругими свойствами жидкости (как это имеет место для упругих или акустических возмущений), но обусловлен способностью жидкости передавать от точки к точке импульс или теплоту (в случае тепловых или температурных возмущений) посредством вязкости или соответственно теплопроводности, а при движении с большими числами Рейнольдса за счет турбулентных вязкости и температуропроводности.  [c.413]


В настоящее время в экспериментальной практике используются разнообразные методы определения турбулентных характеристик потока. Однако все они могут быть разделены на две большие группы. К первой группе относят методы, основанные на введении в поток индикатора (пыль, мелкие частицы), по поведению которого можно сделать вывод о параметрах турбулентности. Это методы, основанные на эффекте Доплера (лазерный, акустический анемометры), методы мгновенной фоторегистрации, разнообразные оптические методы, методы электронных пучков и т. д. Указанные методы имеют небольшую разрешающую способность приборов, для них характерны трудности юстировки оптической системы, большой объем экспериментальной информации, а также определенные трудности расшифровки показаний аппаратуры. В то же время эти методы не искажают структуры потока и находят применение в тех случаях, когда другие методы неприменимы (например, при исследовании структуры вязкого подслоя).  [c.257]

При изучении потоков с большими до- и сверхзвуковыми скоростями широкое применение получили оптические и акустические методы. Их основное преимущество заключается в возможности производить локальные измерения без ввода в поток каких-либо датчиков. В принципе и оптические, и акустические приборы работают либо за счет изменения параметров при прохождении волн через заданную область, либо при их рассеивании на инородных частицах в потоках. Применение лазеров и голографии, а также доплеровского эффекта в оптике и акустике открывает большие перспективы в изучении полей скоростей и турбулентных характеристик.  [c.497]

С точки зрения акустической диагностики важным является то обстоятельство, что акустические сигналы некоторых источников можно с достаточной степенью точности описать детерминированными периодическими функциями, сигналы других источников носят случайный характер. Из перечисленных выше источников сигналы, близкие к детерминированным, вызывают дисбалансы, многие виды механических ударов, сирены, вихри Кармана. Случайные вибрации и шумы вызывают хаотические удары, трение, ошибки изготовления деталей, турбулентность, кавитация.  [c.11]

Основными источниками акустического шума являются выхлопная струя газотурбинного двигателя, пульсации давления в турбулентном пограничном слое, срыв потока и др. В отличие от других видов внешних воздействий (нагрузок), действующих на изделие, у акустических нагрузок есть особенности широкий спектр частот, изменяющихся от единиц герц до нескольких килогерц, случайный характер изменения во времени и в пространстве и др.  [c.443]

Re p). Следует также иметь в виду, что при наличии периодического возмущения скорости жидкости значение критического числа Рейнольдса может быть меньше, чем для стационарного режима течения. Кроме этого, при высоких частотах и достаточно сложном сигнале возмущения скорости может генерироваться искусственная турбулентность под действием интенсивных акустических волн. Эти эффекты могут существенно повлиять на средний по времени коэффициент теплоотдачи. Как правило, интенсивные колебания скорости или давления жидкости приводят к увеличению среднего по времени коэффициента теплоотдачи. Рассмотрим результаты экспериментальных исследований.  [c.133]

Состояние учения о свободной конвекции в настоящее время таково, что многие стационарные задачи имеют точные или приближенные аналитические решения. Среди аналитических работ преобладают исследования ламинарных потоков, возникающих при свободной конвекции. Труднее математической обработке поддаются вопросы свободной конвекции при турбулентном течении в пограничном слое. В этом случае, как и в случае ламинарного режима, для описания теплообмена в условиях свободной конвекции применяются методы теории подобия с широким использованием эксперимента. Изучение вопросов нестационар- ной свободной конвекции имеет также большое значение. Одним из важнейших вопросов теории нестационарного теплообмена в условиях свободного движения является вопрос о влиянии вибраций на конвективные процессы. Вибрационный эффект, создаваемый или перемещением нагретой поверхности в окружающей среде или подводом возмущений в виде акустических или других периодических колебаний к самой среде, может изменить теплоотдачу в несколько раз. Такое изменение теплоотдачи позволяет качественно по-другому подходить к решению новых задач в условиях естественной конвекции, и в настоящее время обширные исследования посвящены этому вопросу. Получить общее аналитическое решение задачи не всегда удается, поэтому большинство работ посвящено экспериментальному и аналитическому исследованию частных случаев.  [c.143]


Влияние акустических колебании на развитие и переход ламинарного пограничного слоя в турбулентный исследовалось экспериментально. В условиях акустических колебаний как при естественных, так и при вынужденных возмущениях в процессе  [c.179]

Экспериментальное исследование влияния полей акустического шума с дискретным спектром и турбулентности с широким спектром на переход ламинарного пограничного слоя в турбулентный приведено на рис. 85, где даны зависимости критического числа Рейнольдса (Ree) p от средней квадратической величины интенсивности (u Iuq)  [c.181]

Эксперименты, проведенные на струях в условиях акустических воздействий в диапазоне чисел Рейнольдса Re = 6,5 Ш -н5,2 X X 10 , показывают, что низкочастотные акустические сигналы приводят к увеличению как интенсивности турбулентности, так и расширению струи, высокочастотные сигналы уменьшают интенсивность турбулентности и перемешивание жидкости [7]. 190  [c.190]

Для анализа физической картины взаимодействия турбулентных и регулярных колебаний рассмотрим следующую упрощенную модель [32] взаимодействие между монохроматической акустической волной и единственной флуктуацией завихренности.  [c.191]

Рис. 88. Влияние акустического поля на единичную завихренность в турбулентном потоке Рис. 88. Влияние <a href="/info/394357">акустического поля</a> на единичную завихренность в турбулентном потоке
Таким образом, формально установлено, что взаимодействие акустического поля и турбулентных составляющих может привести к изменению интенсивности и спектра турбулентных пульсаций. Если частота колебаний совпадает с частотой колебаний относительно больших вихрей, которые в основном обусловливают турбулентное перемешивание жидкости, то наступает турбулентный резонанс, приводящий к усилению интенсивности турбулентных пульсаций.  [c.194]

Экспериментальное исследование влияния акустических колебаний на турбулентный спектр было проведено на трубе диаметром d = 203 мм и длиной L = 8,7 м (см. работу [74]). В качестве рабочего тела использовался воздух, число Рейнольдса изменялось в пределах Re = (5-ь 10) 10 . Колебания создавались посредством звукового генератора. Максимальный уровень звукового давления составлял 149 дБ. Частота колебаний составляла 98 Гц, что соответствовало резонансной частоте. Измерения проводились в сечении, расположенном в пучности скорости стоячей волны. Измерялся спектр как продольный, так и поперечной составляющей скорости вблизи стенки на расстоянии у г = 0,0125 0,015 0,025. Пульсации скорости измерялись термоанемометром постоянного тока, в качестве датчика использовалась нить диаметром 13 мкм.  [c.194]

Рис. 89. Влияние акустических колебаний на турбулентный спектр продольных (а) и поперечных (б) пульсаций скорости при Reo = 5-10 Рис. 89. Влияние <a href="/info/223309">акустических колебаний</a> на <a href="/info/362789">турбулентный спектр</a> продольных (а) и поперечных (б) пульсаций скорости при Reo = 5-10
Рис. 90. Влияние акустических колебаний на турбулентный спектр поперечных пульсаций скорости при j /го = 0,0125 для различных чисел Рейнольдса Рис. 90. Влияние <a href="/info/223309">акустических колебаний</a> на <a href="/info/362789">турбулентный спектр</a> поперечных <a href="/info/2589">пульсаций скорости</a> при j /го = 0,0125 для различных чисел Рейнольдса
Рис. 91. Влияние акустических колебаний на микромасштаб (а) и макромасштаб (б) турбулентности при Re = 5-10 , ylr = 0,015 Рис. 91. Влияние <a href="/info/223309">акустических колебаний</a> на микромасштаб (а) и макромасштаб (б) турбулентности при Re = 5-10 , ylr = 0,015
Схемы на рис. 3.3 подтверждают соображения о различных механизмах образования пленок и уноса части пленочной влаги в ядро потока. К сказанному выше необходимо добавить, что индивидуальность движения даже мелких капель обусловлена фонтанирующим эффектом входных кромок пульсациями параметров потока, вызванными периодической нестационарностью, турбулентностью и акустическими эффектами вихревыми системами при расчетных и нерасчетных режимах.  [c.89]

В дисперсных системах могут иметь место различные виды коагуляции броуновская (для весьма малых частиц), кинематическая (обусловлена разностью скоростей движения капель), турбулентная (вызвана взаимодействием струи капель со сплошной средой, в которую происходит распыл), электрическая (при распыле мелкие капли могут быть заряжены), акустическая, гравитационная (ввиду различной скорости осаждения разных капель в зоне торможения).  [c.197]


Немаловажно, что преобразование имеет в основном математический характер. В частности, оно не учитывает влияния на характеристики течения уровня акустической энергии, появляющейся в турбулентном потоке при гиперзвуковых скоростях. Возникающие при этом безвихревые пульсации создают звуковое давление, увеличивающееся с ростом числа Маха. Не ясно, каким образом эти пульсации усложняют ноле течения при очень боль-щих числах Маха и как они изменяют количество движения в пограничном слое.  [c.435]

При этом в опубликованных работах большей частью исследуется теплообмен при ламинарном пограничном слое на лобовой части тел с притупленным носом. При турбулентном пограничном слое получены лишь первые результаты. При этом необходимо обратить внимание на следующее важное обстоятельство. При сверхзвуковом потоке уравнение вязкой жидкости (Путем разложения по малым приращениям плотности можно разбить на две части первую, отображающую систему нестационарных уравнений гидродинамики, и вторую — систему уравнений акустики. Это соответствует то.му положению, что переход видимого движения в тепло в общем случае происходит двояким путем за счет трения, отображаемого в уравнениях движения тензором вязких напряжений, и за счет акустической сжимаемости.  [c.15]

Наименее изученным до последнего времени оставалось аэро-акустическое взаимодействие, проявляющееся в том, что аэродинамические возмущения от постороннего источника могут изменить турбулентную структуру потока, а также и акустические возмущения, следствием чего являются результирующие акустические характеристики объекта. Так, шум компрессора, камеры сгорания и турбины или шум отрывного обтекания выходных стоек при определенных условиях может вызвать изменение аэ-роакустических характеристик реактивной струи,  [c.126]

В турбореактивных двигателях и в экспериментальных установках для исследования шума турбулентных струй аэроакусти-ческое взаимодействие в главной своей части обусловлено чувствительностью турбулентной струи к акустическим возмущениям, зависящим в общем случае от частоты, интенсивности и мод воздействующего звука. Такая чувствительность определяется в ос-  [c.126]

Таким образом, можно сделать вывод о том, что для внесения ясности в понимание физического механизма энергоразделения в вихревых трубах необходимо провести дополнительные исследования по изучению влияния мелкомасштабной турбулентности, а также влияния КВС и прецессии вихревого ядра на вихревой эффект. В теоретическом плане необходимо провести предварительные оценки возможности энергоразяеления вследствие взаимодействия когерентных вихревых структур, проанализировать уравнения закрученного потока в представлении вихревой, акустической и турбулентной структур возмущений, а также построить физико-математическую модель процесса энергоразделения на базе детального рассмотрения микроструктуры потока в вихревых трубах.  [c.128]

Вихревая труба с щелевым диффузором успещно вписывается в конструкцию вихревого карбюратора, разработанного под руководством профессора А.П. Меркулова [116]. Процесс карбюрирования можно улучшить достаточно глубоким разряжением в приосевой зоне (ядре вихря) интенсивно закрученного потока даже при сравнительно небольших перепадах давления, высокой турбулентностью вихревого ядра, ионизацией, генерацией интенсивных акустических колебаний в широком диапазоне частот, наличием зон повышенной и пониженной температур.  [c.299]

Аэродинамическая картина течения в камере вихревого нагревателя характеризуется комплексом специфических свойств, наиболее полно удовлетворяющих требованиям качественной смесеподготовки большая объемная плотность кинетической энергии, мощные акустические колебания, высокая интенсивность турбулентности, ориентированная в радиальном направлении, рециркуляционные зоны, организация локализованных областей повышенной температуры. При критическом перепаде давления реализуются режимы работы, при которых параметры факела практически не зависят от слабых возмущений среды, в которую происходит истечение. Поле центробежных сил и характерная особенность течения обеспечивают качественное конвек-тивно-пленочное охлаждение корпусных элементов вихревой горелки. Широкий спектр возможного использования вихревых го-релочных устройств показан на рис. 7.1.  [c.307]

Турбулентное движение поддерживается за счет мощности, подводимой от некоторого внешнего источника. В стационарном случае эта мощность совпадает с диссипируемой в единицу времени энергией. Отнесенная к единице массы, эта последняя Едисс ). Акустический коэффициент полезного действия можно определить как отношение излучаемой монхности к дис-сиппруемой  [c.409]

При мотсматическом моделировании движения жидкого металла В ближний аоне воздействия использовались нелинейные уравнения вязкой теплопроводной жидкости — уравнения Навье-Стокса. Для их численного решения использовался метод Маккормака, хорошо зарекомендовавший себя при решении данного типа задач. Расчеты показали, что под действием внешнего импульсного воздействия в расплаве возникают два типа движения среды регулярные акустические течения, охватывающие достаточно большие области пространства, и турбулентные течения непосредстноньо на фронте кристаллизации, имеющие характер многочисленных мелкомасштабных вихрей.  [c.82]

Гидродинамические и аэродинамические источники вибраций и шумов имеются во всех машинах, где есть потоки жидкости или газа. Основная причина появления звука — неоднородность потока, вызванная периодическим его прерыванием (сирены, компрессоры, вентиляторы), турбулентностью, кавитацией, вихрями и т. д. Неодиородпость образует градиенты скоростей частиц жидкости (газа), вследствие чего возникают местные изменения плотности и давления, которые распространяются в виде акустических волн, излучаясь в воздух и проникая в упругие конструкции. С источниками такого типа можно ознакомиться в работах [30, 31, 81, 270, 324, 331, 337, 381].  [c.11]

Предполагается, что под действием акустических колебаний создаётся течение, аналогичное развитому турбулентному режиму, процесс теплообмена в котором определяется мгновенным значением колебательной составляющей скорости согласно квазиста-ционарной зависимости  [c.139]

AUq os X os (nt. Эффективную колебательную составляющую скорости АЫэфф определим из условия равенства числа Нус-сельта для турбулентного режима течения (328) и ламинарного (326) при условии, что в последнем в качестве характерной скорости используется эффективная скорость АЫэфф, а в качестве характерного размера половина длины акустической волны Л/2, т. е.  [c.139]

На рис. 86 приведены энергетические спектры акустических возмущений. Спектральные данные представлены в виде отношения средней энергии колебаний на единицу ширины полосы частот к квадрату скорости основного потока. Спектр минимальной интенсивности дает максимальное значение критического числа Рейнольдса. Возрастающее влияние акустических возмущений совпадает с наличием пиков энергии при последовательно уменьшающихся частотах. Основное влияние на критическое число Рейнольдса оказывают спектры f и G (в отличие от спектра А), в которых отсутствуют дискретные пики. Существенная разница во влиянии спектров В я Е объясняется тем, что переходом управляют какие-то компоненты спектра Е более низкой частоты. Экспериментальные работы по исследованию влияния колебаний на гидродинамику турбулентных потоков в каналах тоже показали, что при наличии наложенных регулярных колебаний скорости взаимодействие турбулентных пульсаций с наложенными регулярными колебаниями возможно в том случае, когда частота наложенных регулярных колебаний скорости совпадает с частотой турбулентных пульсаций, соответствующей малым волновым числам k = 2лп1и).  [c.182]


Пульсации квазистационарного потока передаются от низких частот к высоким, где полностью диссипируют. Следовательно, турбулентные пульсации потока занимают широкий спектр частот, начиная от крупномасштабных (низкочастотных) и заканчиваясь мелкомасштабными (высокочастотными). Такое представление турбулентного потока позволяет раздельно исследовать спектральные (спектральная модель) и квазистационарные (квазистационар-ная модель) характеристики турбулентного потока. На рис. 1 приведена принципиальная схема измерений спектра турбулентных пульсаций во входном (в—в) и выходном (О—0) сечениях патрубка. Воздух из бака (акустического фи.льтра) следует ко входному измерительному устройству в сечении в—в, затем проходит через исследуемый патрубок, выходное измерительное устройство в сечении О—О и через подпорную трубу с сеткой выходит в атмосферу. В измерительных устройствах установлены датчики, соединенные с регистрирующими нрЕборами. При исследовании спектральной модели датчиками являются зонды термоанемометра 7, перемещающиеся с помощью координатника 2, а регистрирующими приборами — вольтметры 4 та 5, соединенные с датчиками через процессор 3. При исследовании квазистационарной модели датчиками являются пневмометрические зонды, а регистрирующими устройствами — батарейные микроманометры.  [c.99]

Кроме того, исторически сложилась такая ситуация, что в классической теории турбулентных режимов гидравлических сетей не нашло широкого использования понятия гидравлического сопротивления - аналога К, который определяется законом Ома. Вместо него применяется безразмерный гидравлический коэффициент трения X (коэффициент Дарси), значение которого зависит от режима движения жидкости (числа Рейнольдса) и шероховатости поверхности проточной части [39]. Именно этот факт обусловил засилье эмпирических формул гидравлики, значительно затормозил аналитический анализ физических процессов в гидроцепях и гидромашинах. Только во второй половине двадцатого века в работах авторов, которые исследовали режимы компрессоров и пневмо- и гидроприводов с позиций теоретических основ электротехники, появилось понятие "скалярного пневмосопротивления" [29,30], акустического импеданса" [4] и гидравлического импеданса"[58,70]. В то же время, ситуация в гидромеханике, в частности, в теории лопастных машин, осталась неизменной.  [c.9]

Интенсивная Т. не только рассеивает волны, но и сама является их источником электромагнитных — в плазме, внутренних—в океане, акустических — в сжимаемой среде. Излучённые поля содержат информацию о Т. и могут быть использованы для её диагностики. Процессы генерации волн турбулентными движениями среды представляют и практич. важность напр., уровень акустич. излучения реактивных двигателей летательных аппаратов настолько высок, что учитывается при их коммерч. оценке.  [c.183]

Акустический шум. Источником акустич. Ш. могут быть любые нежелательные механич. колебания в твёрдых, жидких и газообразных средах. Различают механич. Ш., вызываемый вибрацией, соударениями твёрдых тел (Ш. станков, машин и т. п.) аэро- или гидродинамич. Ш., возникающий в турбулентных потоках газов или жидкостей в результате флуктуаций давления (напр., Ш. в струе реактивного двигателя) термодинамич. III., обусловленный флуктуациями плотности газа (напр., в процессе горения), а также резким повышением давления (напр., при взрыве, электрич. разряде) кавитац. Ш., связанный с захлопыванием газовых полостей и пузырьков в жидкостях кавита-щЛ). Акустич. Ш. (напр., авиац. и ракетных двигателей) — источник НЧ-помех в работе радиоэлектронных устройств и одна из причин нарушения их работоспособности. В ряде случаев акустич. Ш. служит источником информации, т. е. выполняет роль сигнала. Так, по Ш. подводных лодок и надводных судов осуществляют их пеленгацию шумоподобные сигналы используются в радиоэлектронике для разл, измерений.  [c.479]

Физическая природа акустических нагрузок. Физическая природа образования акустических нагрузок на самолете связана с турбулентностью в потоке. Турбулентное смешение завихренных частиц газа (воздуха) с окружающей средой создает сложную систему трехметровых звуковых волн расширения и сжатия, распространяющихся в воздухе со скоростью звука.  [c.91]


Смотреть страницы где упоминается термин Турбулентность акустическая : [c.233]    [c.180]    [c.196]    [c.88]    [c.54]    [c.251]    [c.402]    [c.252]   
Нелинейные волновые процессы в акустике (1990) -- [ c.57 ]



ПОИСК



АКУСТИЧЕСКИЕ ЭФФЕКТЫ, ОБУСЛОВЛЕННЫЕ НЕСТАЦИОНАРНЫМИ ПРОЦЕСАМИ Характеристики некогерентного турбулентного поля как источника звука

Акустические характеристики ближнего и дальнего поля турбулентных струй при их акустическом возбуждении

Акустические характеристики дозвуковых турбулентных струй

Акустическое возбуждение турбулентной струи при нарушении гармоничности воздействующего сигнала

Влияние начальной турбулентности потока на эффективность акустического возбуждения струи

Влияние спутного потока на интенсификацию турбулентного смешения в струе при низкочастотном акустическом возбуждении

Восприимчивость турбулентных струй к слабым гармоническим акустическим возмущениям. Влияние частоты возбуждения

Изменение модового состава турбулентных пульсаций при акустическом возбуждении струи. Локализация мест спаривания и разрушения когерентных структур при акустическом возбуждении струи. Механизмы акустического возбуждения струи

Поглощение звука шумом. Акустическая турбулентность ПО Радиационное давление. Акустические течения

Сверхзвуковые неизобарические турбулентные струи Управление аэродинамическими и акустическими характеристиками

Численное моделирование дозвуковых турбулентных струй при их периодическом (акустическом) возбуждении



© 2025 Mash-xxl.info Реклама на сайте