Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальное уравнение в частных производных особое решение

Особые преимущества интегральных преобразований обнаруживаются при решении систем дифференциальных уравнений в частных производных. Методика решения систем уравнений при этом принципиально не отличается от методики решения отдельных уравнений и заключается в осуществлении ряда последовательных операций. Например, для Одномерных задач теплопроводности, зависящих от координат и времени, необходимо  [c.116]


Особое преимущество принципа Гамильтона обнаруживается в механике сплошных сред, поскольку этот принцип приводит не только к дифференциальным уравнениям задачи, но также и к краевым условиям, которым должны удовлетворять решения этих дифференциальных уравнений в частных производных. Во многих случаях необходимо вначале искать функцию Лагранжа L (входящую в выражение вариационного принципа) в зависимости от характера задачи. Это имеет место, например, при движении электрона в магнитном поле, когда действующая сила не имеет потенциала У далее — в теории относительности, когда L нельзя выразить с помощью выведенного нами выражения (4.10) для кинетической энергии. Здесь роль кинетической части принципа наименьшего действия играет выражение  [c.277]

Особое преимущество принципа Гамильтона обнаруживается в механике сплошных сред, так как этот принцип позволяет получить не только дифференциальные уравнения задачи, но также и краевые условия, которым должны удовлетворять решения этих дифференциальных уравнений в частных производных.  [c.842]

Для дифференциальных уравнений в частных производных или для системы таких уравнений мы должны иметь семейства особых решений. Такие особые решения получили название характеристик дифференциальных уравнений.  [c.9]

Так же, как и особые решения обыкновенных уравнений, характеристики дифференциальных уравнений в частных производных находятся не путем интегрирования их, а путем дифференцирования коэффициентов исходных уравнений. Нахождение самих характеристик сводится к интегрированию обыкновенных дифференциальных уравнений, вообще говоря более простых, чем исходные уравнения.  [c.9]

Теперь рассмотрим те вопросы теории волн на поверхности воды, для решения которых мы желаем применить метод ГИУ. Характерная особенность теории волн на воде заключается в наличии свободной поверхности или границы раздела с другой жидкостью (например, с атмосферой), на которой может поддерживаться волновое движение (где восстанавливающим механизмом является гравитация), даже если основное дифференциальное уравнение, описывающее движение внутри жидкости, будет эллиптическим, например уравнение Лапласа для потенциала скорости ф (v = УФ) в случае безвихревого течения невязкой и несжимаемой жидкости. Такие предположения обычно применяются в задачах о волнах на поверхности воды они существенно нарушаются тогда, когда происходят некоторые особые физические явления, например разрушение волн. Исключая эти явления и некоторые другие эффекты, например поверхностное натяжение и т. д., мы получим [2] для Ф следующее линейное дифференциальное уравнение в частных производных внутри области D, занятой жидкостью  [c.19]


При применении метода ВКБ могут встретиться значительно более трудные вопросы построения решения. Примером может служить случай, когда выполняется рекуррентная процедура (1) ж срединная поверхность оболочки содержит линию, где изменяется знак гауссовой кривизны. Впрочем, определенные функции Уо по линейному дифференциальному уравнению в частных производных первого порядка сводится к интегрированию системы обыкновенных уравнений, поэтому выяснение особых точек и характера решения около этих точек не должно представлять в каждом конкретном случае принципиальных затруднений. Вопросы же построения решения в духе метода ВКБ являются при наличии таких особых точек предметом исследования в современном математическом анализе даже в задачах, сводящихся к обыкновенным дифференциальным уравнениям.  [c.239]

В целом МКЭ очень эффективен при решении многих задач расчета электромагнитного поля, особенно в областях с криволинейными границами. Однако применение МКЭ требует развитых программных средств ввода исходных данных, генерации и оптимальной нумерации узлов конечных элементов, организации наглядного вывода результатов и их обработки. При расчете поля в областях с простой границей МКЭ не имеет преимуществ перед методом конечных разностей. Поэтому в дальнейшем, где это особо не оговаривается, численное решение дифференциальных уравнений в частных производных осуществляется МКР.  [c.97]

Книга посвящена описанию метода конечных элементов и его приложений к широкому классу нелинейных задач механики сплошных сред и строительной механики. Особое внимание уделено решению задач механики твердого тела, однако основы метода изложены с достаточной степенью общности, допускающей применение, например, к нелинейным задачам гидродинамики, электродинамики, теории дифференциальных уравнений в частных производных. Рассмотрены также различные численные методы решения больших систем нелинейных уравнений.  [c.6]

Решение уравнения в частных производных методом разделения переменных. У нас нет какого-либо общего метода решения уравнений в частных производных. Однако при некоторых особых условиях оказывается возможным найти полный интеграл уравнения Гамильтона — Якоби. Этот специальный класс задач сыграл важную роль в развитии, теоретической физики, так как оказалось, что ряд основных задач теории атома Бора принадлежит к этому классу. В таких задачах одно уравнение в частных производных с п переменными может быть заменено п обыкновенными дифференциальными уравнениями с одной независимой переменной, которые полностью интегрируются. Такие задачи называются задачами с разделяющимися переменными .  [c.275]

Уже в 30-е годы было начато изучение устойчивости более общих систем, чем у Ляпунова, что соответствует переходу от пространств конечного числа измерений с евклидовой метрикой к пространствам бесконечно большого числа измерений и метрикой общего характера. Эти исследования были продолжены и значительно продвинуты за последние два десятилетия с широким использованием методов функционального анализа. Переход к пространствам бесконечного числа измерений и общим метрикам дал возможность расширить теорию устойчивости на механические системы, описываемые не обыкновенными дифференциальными уравнениями, а бесконечными системами конечноразностных уравнений, уравнениями с запаздывающим или опережающим аргументом, уравнениями в частных производных и интегро-дифференциальными уравнениями и т. д. Такие системы все чаще встречаются в технике и физике, в теории устойчивости их удельный вес, несомненно, будет расти. Для таких систем подход к проблеме устойчивости в духе Ляпунова имеет особое значение, потому что для них весьма важен правильный учет начальных возмущений и распределение решений по типам и классам в зависимости от начальных условий. Опыт показывает, что здесь встречается гораздо большее разнообразие зон начальных условий, которым соответствуют разные по характеру решения, т. е. разное поведение физической системы.  [c.132]


Вопросам усреднения уравнений с частными производными и их приложениям посвящена обширная литература. Настоящая книга почти не имеет пересечений с другими монографиями, в которых излагаются задачи усреднения дифференциальных операторов. Особое внимание в ней обращено на задачи, связанные с линейной стационарной системой теории упругости. Поэтому для удобства читателя первая глава книги содержит материал, относящийся к исследованию стационарной системы теории упругости. В ней рассматриваются вопросы существования и единственности решений основных краевых задач теории упругости, неравенства Корна и их обобщения, априорные оценки решений и их свойства, краевые задачи в так называемых перфорированных областях и свойства их решений, а также приводятся некоторые вспомогательные сведения из функционального анализа. Все эти результаты используются в последующих главах, многие из них излагаются впервые.  [c.6]

ЧТО И НОСИТ название Эйлерова дифференциального уравнения, которое имеет особо важное значение для решения некоторых вариационных задач в общем, аналитическом виде. Но если исходить из существования и непрерывности частных производных первого порядка, то приближенное решение задачи в числах (а не в общем аналитическом выражении) может быть получено и без использования этого орудия, что мы сейчас и. покажем на некотором численном примере очень простого характера.  [c.241]

Особо следует отметить работу 3. С. Аграновича, В. А. Марченко, В. П. Шестопалова [89], в которой по существу определены основные направления в решении проблем резонансного рассеяния волн периодическими дифракционными решетками. К моменту ее появления было ясно, что основным средством электродинамического анализа в резонансной области частот должен стать численный эксперимент. Необходимо только так переформулировать исходную краевую задачу для дифференциального уравнения в частных производных, чтобы можно было эффективно использовать вычислительную технику с прогнозируемой погрешностью и в реальном масштабе времени получать необходимые результаты. В [891 реализована схема, отработанная в рамках классического функционального анализа. Путем выделения и обраш,ения (метод полуобраш,ения, левая регуляризация) статической части задача сведена к канонической фредголь-мовой. На этом формально ее решение можно считать законченным, так как для операторных уравнений фредгольмового типа из единственности следует существование решения, а свойства компактности обеспечивают сходимость вычислительных процедур, основанных на редукции бесконечных систем линейных алгебраических уравнений [90].  [c.8]

Среди колеблющихся тел ни одно не занимает такого выдающегося положения, как натянутые струны. С давних пор они применяются для музыкальных целей, да и в настоящее время они все еще являются существенной частью таких важных инструментов, как фортепиано и скрипка. Для математика они всегда должны представлять особый интерес, ибо именно вокруг них разыгрывались споры Даламбера, Эйлера, Бернулли и Лагранжа относительно природы решений дифференциальных уравнений в частных производных. Для изучающих ак)сгику струны вдвойне важны. Благодаря сравнительной простоте их теории они являются основой, которая облегчает рассмотрение трудных или неясных вопросов, таких, как вопросы, связанные с природой простых тонов с другой стороны, в форме монохорда или сонометра струны дают исключительно удобное средство для сравнения высот.  [c.193]

Вычислительная устойчивость всех упомянутых выше зависящих от времени решений была ограничена сверху по числу Рейнольдса (принципиально этот предел определяется сеточным числом Рейнольдса, т. е. числом, полученным по размеру шага ячейки конечно-разностной сетки). В 1966 г. Томан и Шевчик добились, по-видимому, неограниченной вычислительной устойчивости, используя для представления конвективных членов разности против потока и уделяя особое внимание граничным условиям. Их расчеты обтекания цилиндра простирались до чисел Рейнольдса, равных миллиону они даже могли вращать цилиндр и получать магнусову подъемную силу, не сталкиваясь при этом с вычислительной неустойчивостью. Несмотря на то что их схема имела лишь первый порядок точности, согласование полученных ими результатов с экспериментальпыми данными заставило переоценить важность формального порядка ошибок аппроксимации при разностном представлении дифференциальных уравнений в частных производных. В этой связи представляется важной работа Чена [1968], установившая существенное влияние численной постановки граничных условий.  [c.21]

После того как дифференциальные уравнения движения написаны на основании вариационного принципа Гамильтона, возникает вопрос об их фактической интеграции. Для этой цели Гамильтоном и Якоби систематически развита специальная теория. Эта теория имела особое значение для небесной механики и для классической теории атома Бора—Зоммерфельда. Построение этой теории заключает в себе три последовательных этапа. Прежде всего необходимо найти возможно более простую форму дифференциальных уравнений движения. Эта форма была найдена в канонических уравнениях Галгильтона. Затем надо установить общие законы таких преобразований этих дифференциальных уравнений, при которых они сохраняли бы свою форму. Такими законами оказались канонические преобразования и теория важнейших их инвариантов. Наконец, надо развить собственно теорию интегрирования систем канонических уравнений. Решение этой задачи привело к установлению и интегрированию уравнения в частных производных Гамильтона—Якоби.  [c.827]

Задачи механики сплошных сред сводятся,к дифференци--альным уравнениям в частных производных, которые необходимо интегрировать при определенных краевых условиях. Приближенное решение краевых задач во многих случаях удается получить с применением так называемых прямых методов. По определению С. Л. Соболева, прямыми называются такие методы приближенного решения задач теории дифференциальных и интегральных уравнений, которые сводят эти задачи к конечным систейам алгебраических уравнений. В теории и практике применения прямых методов особое место занимают два метода метод Ритца и метрд Галеркина.  [c.153]


По-видимому, бросается в г.таза отсутствие дифференциального уравнения Гамильтона —Якоби с частными производными в его обычной форме, имеющей особое значение для решения проблем, которые допускают разделение переменных. Мы предпочитаем подчеркнуть преимущества более общей формы этого уравнения, предложенной Цейпелем, которая была специально задумана, чтобы служить фундаментом мощного метода теории возмущений. Этот метод содержит метод Делонэ как частный случай. Лица, интересующиеся другими аспектами этого вопроса, найдут многочисленные дополнительные сведения в Аналитической динамике Уиттекера и других руководствах.  [c.8]


Смотреть страницы где упоминается термин Дифференциальное уравнение в частных производных особое решение : [c.20]   
Теплотехнический справочник том 1 издание 2 (1975) -- [ c.47 ]



ПОИСК



Дифференциальное уравнение в частных производных

Дифференциальные Решение особое

Дифференциальные в частных производных

К п частный

Особые

Производная

Производная частная

Решение дифференциального уравнения

Решение уравнений в частных производных

Уравнение в частных производных

Частные производные

Частные решения



© 2025 Mash-xxl.info Реклама на сайте