Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь лакокрасочные покрытия

Одной из причин плохой прилипаемости лакокрасочных покрытий к цветным металлам является то, что их поверхность обычно более гладкая, чем у железа (см. глава I). Вследствие этого при окрашивании цветных металлов не может быть такого переплетения и сцепления лакокрасочного материала с металлом, какое происходит при окрашивании железа. Общеизвестно, например, что на полированной поверхности железа и стали лакокрасочное покрытие держится гораздо хуже, чем на обычной для этих металлов шероховатой поверхности.  [c.146]


Например, срок службы оцинкованной стали в жилых строениях оценивается в 15-20 лет, после строительства невдалеке от жилого массива химического предприятия этот срок может уменьшиться до 5 лет.В последнем случав необходимо предусмотреть дополнительные средства защиты, например,лакокрасочные покрытия.  [c.50]

Влияние подготовки поверхности стали на срок службы лакокрасочных покрытий [8]  [c.254]

Например, срок службы кровель, изготовленных из оцинкованной стали, в чистом воздухе оценивается в 15...20 лет, однако невдалеке от химического предприятия этот срок может уменьшиться до 5 лет. В последнем случае необходимо предусмотреть дополнительные средства защиты, например, нанесение лакокрасочных покрытий.  [c.23]

Важным преимуществом многих ингибиторов второго типа является их низкая стоимость и доступность сырья. Поэтому для крупно-тоннажного травления сталей ингибиторы второго типа нашли наибольшее применение. По эффективности и технологичности они уступают синтетическим ингибиторам и обладают рядом недостатков,, которые в меньшей степени присущи ингибиторам первого типа. К ним относятся непостоянство состава, из-за чего их защитное действие колеблется в широких пределах, что осложняет их практическое использование способность в процессе применения подвергаться нежелательным химическим превращениям (разложению, осмолению и т. п.), снижающим эффективность защиты особенно при повышенных температурах. При использовании ингибиторов второго типа существует возможность осаждения отдельных составных частей ингибитора по мере изменения состава коррозионной среды,, например при накоплении солей железа и снижении концентрации кислоты в процессе травления металлов, а также возможность загрязнения протравленной поверхности металла, что препятствует дальнейшим технологическим операциям (холодной деформации,, нанесению металлических и лакокрасочных покрытий).  [c.81]

Грунтовка. — это краска или эмаль, которая способна образовывать-покрытие с особо высокой адгезией к металлу. Кроме того, к этому покрытию должны хорошо прилипать другие лакокрасочные материалы, наносимые на него. Отсюда следует, что грунтовка предназначена для формирования первого слоя в многослойном лакокрасочном покрытии. От нее, стало быть, ие требуется, чтобы она давала красивое покрытие.  [c.11]

Тонкий неповрежденный слой окалины сравнительно хорошо защищает сталь. Обычно образуются более толстые слои, которые имеют иной коэффициент теплового расширения, чем металл, и легко отслаиваются. Они не обеспечивают достаточной адгезий лакокрасочного покрытия и ускоряют его разрушение.  [c.63]


Фосфатные слои в сочетании со смазочным материалом облегчают и даже делают возможной обработку без снятия стружки при холодном деформировании. Однако эти слои предназначены главным образом для нанесения лакокрасочных покрытий с толщиной слоя 1—3 мкм, т. е. 150—450 мг-м-. Кроме того, процесс фосфатирования применяют в качестве изоляционных слоев на поверхности трансформаторных сталей, а также для обеспечения приработки зубчатых колес.  [c.74]

Под воздействием атмосферы на поверхности покрытия образуется слой карбоната, который замедляет дальнейшую коррозию цинка. Скорость коррозии цинка в атмосфере примерно в 20 раз меньше скорости коррозии стали. Для внешней атмосферы целесообразно цинковое покрытие массой 400—500 г-м- , т. е. толщиной 57—71 мкм, или цинковое покрытие массой 350 г-М , т. е. толщиной примерно 50 мкм, с последующим нанесением лакокрасочного покрытия или хроматированием. Толщина цинкового покрытия, на которое воздействует проточная вода, должна составлять примерно 130 мкм, т. е. иметь массу около-1000 гм-2 [15].  [c.76]

Рабочая среда для дробеструйной очистки стали под лакокрасочное покрытие — стальной или чугунный гранулят либо дробь ло стандарту ЧСН 42 9823.  [c.110]

Пределом срока службы лакокрасочного покрытия является состояние, при котором на поверхности стали образуется ржавчина, покрывающая не более 10% ее площади (ЧСН 03 8153).  [c.112]

Качество поверхности стали перед нанесением лакокрасочного покрытия должно отвечать стандарту ЧСН 03 8221.  [c.117]

Примечание. Грунтовое лакокрасочное покрытие мест или ребер, предназначенных под сварку при толщине до 25 мкм возможна газовая сварка, дуговая электросварка и точечная сварка электрическим сопротивлением применяется также для изделий, которые должны обладать высокой коррозионной стойкостью сушка в течение 15—60 мин, следующее лакокрасочное покрытие наносят через 24 ч поверхность стали должна быть подвергнута дробеструйной очистке до степени о1 согласно изображению ol или Dol в приложении к ЧСН 03 8221 толщина покрытия не должна превышать 25 мкм для кроющего слоя можно применять все виды лакокрасочных материалов защитное действие сохраняется в течение шести месяцев.  [c.124]

ВЛИЯНИЕ ГАЛЬВАНИЧЕСКИХ И ЛАКОКРАСОЧНЫХ ПОКРЫТИЙ НА КОРРОЗИОННО-МЕХАНИЧЕСКУЮ СТОЙКОСТЬ СТАЛЕЙ  [c.117]

Защитные покрытия в основном подразделяются на две группы — неметаллические и металлические. В свою очередь неметаллические покрытия бывают органическими (лаковые, битумные, пластмассовые, эпоксидные, резиновые и др.) и неорганическими (цементные, асбоцементные, окисные, силикатные, фосфатные, сульфидные и др.). Часто в защитных системах применяют комбинации из органических и неорганических покрытий, например фосфатирование перед нанесением лакокрасочного покрытия для улучшения адгезии органического покрытия и одновременно его защитной способности. Металлические покрытия отличаются от органических тем, что они непроницаемы для коррозионной среды. Однако в них имеются дефекты — поры, царапины, посторонние включения и др., которые создают предпосылку для коррозионного воздействия на основной металл. При наличии пор в коррозионном покрытии коррозионное действие агрессивной среды зависит от электрохимического поведения обоих металлов — основного и металла покрытия. По этому признаку покрытия делятся на катодные и анодные. По отношению к стали, например, цинковое покрытие является анодным, а медное — катодным, т. е. цинковое покрытие оказывает защитное действие по отношению к стали, но при этом само разрушается, а медное покрытие в результате гальванического действия повышает скорость коррозионного разрушения стали.  [c.35]

Эпоксидно-полиамидные материалы. Грунтовка ЭП-076 желтая на основе смолы Э-41. Применяется для грунтования магниевых и титановых сплавов и сталей под эпоксидные лакокрасочные покрытия отвердитель — № 2 (33,3 ч. на 100 ч. грунтовки).  [c.76]


Рис. 8.14. Анодная поляризация стали с лакокрасочным покрытием Рис. 8.14. <a href="/info/39580">Анодная поляризация</a> стали с лакокрасочным покрытием
В зоне брызг поверхность металла почти постоянно смачивает хорошо аэрированная морская вода. Эти условия наиболее агрессивны для конструкционных сталей, в то время как для нержавеющих сталей и титана условия в зоне брызг благоприятны, так как способствуют поддержанию пассивности. Лакокрасочные покрытия разрушаются в зоне брызг быстрее, чем в других зонах.  [c.29]

Коррозия металлов в других типах вод в основном подчиняется закономерностям, рассмотренным для морской воды с учетом особенностей, связанных с ионным составом, температурой и биологическим фактором конкретной водной среды. В пресной воде с малым содержанием растворимых солей скорость коррозии всех материалов уменьшается. Отсутствие в воде ионов хлора позволяет успешно применять хромистые и хромоникелевые стали, алюминиевые сплавы без опасности возникновения язвенной коррозии. Отличительной особенностью пресной воды является ее меньшая электропроводность, что приводит к уменьшению опасности контактной и щелевой коррозии. Отсутствие в воде галоидных ионов повышает характеристики коррозионно-механической прочности, стойкость защитных лакокрасочных покрытий.  [c.30]

Рассмотренные стали обладают примерно одинаковой коррозионной стойкостью в атмосфере и водных средах. Коррозионная стойкость снижается при наличии в составе стали неметаллических включений в виде оксидов, сульфидов, а также при наличии на поверхности прокатной окалины. Во всех случаях применения требуется защита от коррозии окраска, эмалирование, ингибиторы, металлические защитные покрытия. Наиболее эффективным способом защиты в атмосферных условиях для ответственных конструкций является горячее алюминирование или металлизация с последующей покраской. В растворах электролитов и в природных водах эффективна комплексная защита лакокрасочными покрытиями в сочетании с катодной защитой.  [c.67]

Баки с катодной защитой предназначены для хранения воды с температурой до 95 °С. При катодной защите применяют аноды из железокремниевого чугуна (ГОСТ 11849—76) со скоростью анодного растворения, не превышающей 0,2 кг/(А-год). Железокремниевые аноды не свариваются, и для катодной защиты баков их следует соединять встык с помощью стальной шпильки. Допускается применение анодов из алюминия, особенно при сочетании катодной защиты с лакокрасочным покрытием В-ЖС-41. Не допускается применение анодов из углеродистой стали, загрязняющих подпиточную воду продуктами коррозии в результате растворения анодов и ухудшающих качество сетевой воды. Срок службы железокремниевых анодов до их замены на новые составляет не менее 5 лет. Надежная электрохимическая защита внутренней поверхности бака от коррозии обеспечивается при величине поляризационного потенциала в пределах от —0,54 до —0,60 В (по нормальному водородному электроду). Визуальный осмотр внутренней поверхности баков с катодной защитой должен проводиться один раз в год.  [c.163]

Для ряда материалов, в частности для малоуглеродистой стали, коррозионные условия в зоне брызг являются наиболее агрессивными. Содержащиеся в брызгах пузырьки воздуха усиливают разрушающее действие морской воды на защитные пленки и покрытия. Лакокрасочные покрытия обычно разрушаются в зоне брызг быстрее, чем в любой другой зоне.  [c.16]

В Тихом и Атлантическом океанах были проведены глубоководные испытания конструкционных сталей, высокопрочных нержавеющих сталей и алюминиевых сплавов с 7 различными лакокрасочными покрытиями [219]. В Тихом океане образцы находились на дне на глубине 1800 м в течение 6 мес, а в Атлантическом — на дне на 1235 м в течение более 4 лет.  [c.196]

Результаты испытаний образцов сталей с лакокрасочными покрытиями приведены в табл. 83.  [c.247]

Прибор ЭТ-3. Предназначен для измерения толщины немагнитных покрытий на ферромагнитной основе (стали, чугуна), а также лакокрасочных покрытий, конденсаторной бумаги и фольги.  [c.45]

Авиационные бензины 320, заготовки и пиломатериалы 235, масла 301, фибра 296 Автоматная сталь 14 Автомобильная рессорная сталь 25 Автомобильные бензины 320, масла 304, шины 253 Автотракторные масла 301 Адгезия лакокрасочных покрытий 188 Адсорбенты 279 Адипиновая кислота 279 Азот 279  [c.335]

Таким образом, применение стали типа X16 для изготовления магнитопроводов электрических машин даст возможность избежать нанесения лакокрасочных покрытий на рабочие поверхности магнитопроводов и снизить трудоемкость их изготовления уменьшить минимальную величину одностороннего воздушного  [c.142]

Фосфатирование применяется для защиты от коррозии изделий из стали и чугуна, работающих в наружной неагрессивной атмосфере и в закрытых помещениях, — фосфатирование с последующим промасливанием, а также в качестве грунта под лакокрасочное покрытие указанных изделий.  [c.715]


Как показали М. М. Гольдберг и Н. Д. Томашов, электрохимический метод можно применять для определения защитных свойств различных лакокрасочных покрытий на стали по величине тока пары стальной образец с покрытием — насыщенный каломельный электрод, а также для установления механизма действия покрытия по значениям потенциалов окрашенного и неокрашенного образца в растворе электролита (например, в 3%-ном Na l). Схема простой установки для этих целей приведена на рис. 356. В течение испытаний измеряют поочередно величину  [c.463]

Наиболее доступными способами борьбы с атмосферной коррозией углеродистых сталей являются различные металлические покрытия лакокрасочные покрытия, содержащие пассивирующие пигменты применение замедлителей коррозии, смазок и др. В зависимости от конструкционных особенностей сооружений, деталей и изделий, эксплуатационных условий, характера агрес-сишпн атмосферы и т. д. в каждом отдельном случае выбирается тот 1ЛИ иной метод защиты. Эти методы защиты рассматри-ваю- ся в соответствующих разделах.  [c.183]

Показано [165], что на основе этих соединений и комплексов могут быть созданы высокоэффективные экологически чистые ингибиторы коррозии (включая коррозионно-усталостное разрушение, фреттинг-коррозию) углеродистых сталей в водных средах с различными значениями pH и в биологически активных средах. Они хорощо зарекомендовали себя в различных областях техники как ингибиторы солеотложения. Кроме того, соединения и комплексы, содержащие переходные металлы и их соли, снижают пористость защитных лакокрасочных покрытий, повышают продолжительность их набухания, способствуют сохранению адгезии, а также позволяют улучшать антифрикционные, противоизносные и противопиттинговые свойства масел.  [c.292]

Примечания. 1. Покрытия наносятся на углеродистую сталь. 2. А - низколегированная сталь без покрытая В - лакокрасочное покрытие 120 мкм с р чным удалением ржавчины С - лакокрасочное нокрыгие Г20 мкм на ne Ko i-руйно-обработанной поверхности D - горячее цинковое 60-80 мкм Е - ручная металлизация алюмичием 150-200 мкм F - электрометаллизация алюминием 80 мкм + + лакокрасочное покрытие G - ручная металлизация алюминием 150-200 мкм + + лакокрасочное покрытие.  [c.62]

Установка имеет пульт управления и работает по автоматическому циклу Что касается материалов, из которых сделаны отдельные узлы установки то нагреватель 7 состоит из трубчатой греющей камеры и эмалированных съемных греющих труб Отдельные части нагревателя соприкасающиеся с раствором имеют лакокрасочное покрытие, состоящее из двух слоев клея БФ-2, пигментированного окисью хрома и ддух слоев эпоксидно-фенольного лака Точно так же защищены насос, приборы КИП и другие части Аппаратура, которая соприкасается с ненагретым раствором вылолнена из винипласта стали, футерованной полиэтиленом, коррозионно-стойкой стали без покрытий Трубопроводы для нагретого раствора — полиэтиленовые, вентили футерованы полиэтиленом Вода для обогрева труб нагревателя мажет дополнительно подогреваться паром подаваемым в межтрубное пространство греюшей камеры  [c.100]

В присутствии ингибиторов улучшаются физико-механические свойства металлов, уменьшается количество шлама, загрязняющего поверхность, наблюдается уменьшение ее шероховатости и выравнивание микрорельефа, резко снижается новодороживание металла. В результате этого уменьшается количество брака и непроизводительный расход металла и энергии при последующих процессах обработки металла — холодной прокатке, нанесения гальванических лакокрасочных покрытий, при горячем цинковании и т. д. [52 109 127]. Появляется возможность снятия окалины со сталей (например, электротехнические стали ЭО, 300, ЭО, 400), для которых процесс кислотного травления без ингибитора совершенно неприемлем из-за неравномерного растворения поверхности металла [131]. Существенно снижается водородная хрупкость и повышается сопротивление металлов коррозионной усталости [24 39 52 58].  [c.82]

До 1971 г. в металлофонд ЧССР входило около 13 млн. т стали в различных сооружениях и конструкциях. Несущих конструкций было около 5,5 млн. т [5]. При средней удельной площади 30 м2/т это количество составляет приблизительно 165 млн. рабочей поверхности, которая контактирует с коррозионной средой. Средний срок службы четырех — шестислойного лакокрасочного покрытия, эксплуатируемого в зависимости от агрессивности среды от одного года до десяти лет, составляет примерно шесть лет. Отсюда следует, что каждый год необходимо обновлять около 30 млн. м2 стальных конструкций. Далее, нужно иметь в виду, что каждый год расходуются 300 тыс. т металла на сооружение новых конструкций с рабочей поверхностью, подверженной воздействию агрессивной атмосферы, общей площадью около 9 млн. м . Защита от коррозии рабочих поверхностей осуществляется преимущественно путем нанесения лакокрасочных покрытий. Если ежегодная производительность труда одного рабочего по покраске составляет примерно 2 тыс. м , то для поддержания требуемого качества 27—30 млн. м рабочих поверхностей стальных конструкций потребуется около 15 тыс. рабочих. При сред-  [c.11]

Параллельно с развитием ускоренных испытаний на воздействие осадками соли проводилось изучение сульфата, являющегося активным ионом и присутствующего в загрязненной промышленной среде в качестве ускорителя коррозии. Так, в 30-х годах Ивансом и Бриттеном было предложено использовать туман слабой серной кислоты, а Верноном — смесь разбавленной сернистой кислоты с сульфатом аммония в присутствии хлорида натрия или без него. В дальнейшем стали проводить коррозионные испытания серной кислотой в виде струи, испытания двуокисью серы (метод RL) при использовании испарения раствора сернистой кислоты в высоковлажной среде. Испытание Кестерниха, схожее с испытанием методом RL, широко применялось одно время в Европе для проверки качества изделий с покрытиями, а сейчас используется главным образом для проверки лакокрасочных покрытий.  [c.161]

Изучали также поведение лакокрасочных покрытий с добавками Ред04 и SiOj (0,5%). При этом было установлено, что незащищенные образцы стали через 27 сут полностью покрылись продуктами коррозии. Рыхлые продукты коррозии вследствие большой абсорбционной способности влаги стимулировали процесс коррозии. Образцы же, покрытые железным суриком, в течение года сохранились в удовлетворительном состоянии, но через 2 года на них были обнаружены тонкие трещины (под действием 0,1%-ного раствора азотнокислого серебра в трещинах выделялись тонкие нити серебра, являющиеся признаком разрушения краски). Образцы же, окрашенные железным суриком с вышеуказанной добавкой,, остались практически без изменения. Образцы из обыкновенного кровельного железа взвешивались до и после окраски. Перед определением потери массы краски снимались. Реакция на азотнокислое серебро не выявила никаких оголенных участков. Аналогичные результаты дали добавки двуокиси кремния.  [c.96]

Примечания 1, В случае примеиепия сталей марок ЮХНДП, ЮХСНД и 15ХСД в неагрессивной и слабоагрессивной среде защита лакокрасочными покрытиями не производится. 2. При относительной влажности воздуха выше 80 % или в условиях конденсации влаги предусматривают Ла-2(40). 3. Защите пе подлежат конструкции при толщине цинкового покрытия до 40 мкм. 4. При применении лакокрасочных покрытий ла основе перхлорвиниловых материалов и материалов иа сополимерах винилхлорида количество покрывных слоев увеличивается на I, а общая толщина покрытия — на 20 мкм.  [c.67]


Газоходы, воздуховоды и трубопроводы. Газоходы больших диаметров, изготоавливаемые из углеродистых сталей, защищают гуммированием или полиизобутиленом с бронирующим слоем футеровки — из керамических плиток прямых или лекальных. При транспортировании сухих газов с температурой до 70 °С можно применять лакокрасочные покрытия ПХВ или эпоксидные материалы с армированием стеклотканями, хлори-новой или углеграфитовой тканью, с футеровкой 7з в нижней части штучными материалами. На ряде заводов химволокна хорошо зарекомендовали себя газоходы из бипластмасс (винипласт— стеклопластик на эпоксидных смолах).  [c.100]

Воздуховоды изготавливают из углеродистой и нержавеющей сталей, титана, биметалла, металлопласта, оцинкованной стали, винипласта. Углеродистую сталь защищают лакокрасочными покрытиями в зависимости от условий работы и назначения. В необходимых случаях внутренняя поверхность подвергается гуммированию или покрытию жидкими резиновыми смесями (бортотсосы).  [c.100]

Ингибитор ИФХАН-100, также являющийся производным аминов, получается на основе ИФХАН-1, но в отличие от него неприятным запахом не обладает. Молекулярная масса его 172. Эти ингибиторы обладают большой универсальностью, защищая от атмосферной коррозии как черные, так и цветные металлы. Ингибитор ИФХАН-1 не оказывает вредного действия на свойства большинства электроизоляционных материалов, лакокрасочных покрытий, резину и керамику. Срок защитного действия для стали, меди в зависимости от герметичности упаковки 5—10 лет. При консервации энергооборудования (в том числе турбин) применяется продувка ингибированным подогретым воздухом [27]. Для защиты от атмосферной коррозии концентрация ингибитора в воздухе внутри защищаемого оборудования должна составлять 10 —10 г/л. При использовании силикагеля, пропитанного ингибитором (линасиля), концентрация ингибитора в нем обычно равняется 30—40 %. Для консервации 1 м объема требуется не менее 15 г линасиля.  [c.191]

Фосфатирование широко применяется как метод подготовки поверхности под окраску углеродистых сталей и цинка. Оно заключается в обработке хорошо очищенных поверхностей растворами первичных фосфорнокислых солей цинка, марганца и железа в присутствии свободной фосфорной кислоты. Получаемая на поверхности металла фосфатная пленка толщиной около 3 мк имеет кристаллическое пористое строение. Лакокрасочное покрытие имеет отличное сцепление с фосфати-рованной поверхностью и обладает повышенными антикоррозийными свойствами.  [c.264]

Применение электротехнической крррозионностойкой стали типа Х16 позволяет исключить лакокрасочные покрытия рабочих поверхностей магнитопроводов и тем самым уменьшить величину воздушного зазора и улучшить характеристики машин.  [c.141]

Емкости, в которых хранится гидразин или его растворы, должны быть изготовлены из нержавеющей или углеродистой стали, защ ищенной лакокрасочными покрытиями во избежание расходования гидразина на восстановление кислорода воздуха недопустимо скопление в емкостях окислов железа и меди. Переносный ба-40iK и баки-дозаторы изготовляют из обьгчной углеродистой стали, а бак-растворитель — из нержавеющей. Оборудование y TaiHOBKH, коммуникации от бака-дозатора и арматуру проверяют на герметичность заполнением установки водой при включенном в работу насосе-дозаторе. Особое внимание следует обращать на герметичность сальников насоса, вентилей, сварных стыков и т. д.  [c.84]

Защитное действие хромата циклогексиламина проверено на образцах и изделиях, представляющих собой сочетания черных и цветных металлов частично луженом сером чугуне, стали со свинцовистой бронзой, оцинкованной стали, никелированной стали и алюминиевомарганцевой бронзы с баббитом, меди и латуни как в чистом виде, так и с металлическими и лакокрасочными покрытиями.  [c.102]


Смотреть страницы где упоминается термин Сталь лакокрасочные покрытия : [c.503]    [c.112]    [c.198]    [c.62]    [c.336]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.5 ]



ПОИСК



Влияние гальванических и лакокрасочных покрытий на коррозионно-механическую стойкость сталей

Покрытие лакокрасочные



© 2025 Mash-xxl.info Реклама на сайте