Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потенциал поляризационный

Рис. 1.8. Схема включения отдельной электролитической ячейки для записи объема продиффундировавшего водорода я потенциала поляризационной стороны (пояснения см. текст) Рис. 1.8. <a href="/info/440147">Схема включения</a> отдельной электролитической ячейки для записи объема продиффундировавшего водорода я потенциала поляризационной стороны (пояснения см. текст)

И тантале, приводятся на рис. 3 и 4, а построенные по установившимся значениям потенциала поляризационные кривые — на рис. 5. Анодная поляризация сопровождалась осаждением двуокиси свинца с выходом по току 50—80%.  [c.91]

Аналитическую зависимость эффективного потенциала электрода от плотности тока V = / (г) можно получить только для простых случаев коррозии, в то время как поляризационные кривые (графическое изображение этой зависимости) можно получить опытным путем даже для наиболее сложных случаев коррозии, соответствующих практическим условиям работы коррозионных элементов.  [c.270]

Затем графически складывается омическое падение потенциала с одной из поляризационных кривых — катодной (рис. 182, б) или анодной (рис. 182, в) в направлении, совпадающем с направ-  [c.271]

Графическое решение короткозамкнутой многоэлектродной системы состоит в следующем. Имеющиеся для каждой анодной и катодной составляющих (электродов) всех металлов кривые плотность тока—потенциал [K = /(i)l пересчитывают в соответствии с величиной площади каждой составляющей системы и наносят на общую поляризационную коррозионную диаграмму в координатах сила тока —потенциал 1У = / (/)].  [c.287]

Под нормальным ходом поляризационных кривых подразумевается такой, когда в результате анодной поляризации потенциал делается всегда положительнее, а катодной — всегда отрицательнее.  [c.295]

Рис. 205. Поляризационная диаграмма короткозамкнутого элемента пленка— пора, поясняющая влияние площади пор на измеряемый потенциал Рис. 205. <a href="/info/6516">Поляризационная диаграмма</a> короткозамкнутого элемента пленка— пора, поясняющая влияние площади пор на измеряемый потенциал
Рис. 206. Поляризационная диаграмма короткозамкнутого элемента пленка-пора, поясняющая влияние утолщения пленки на измеряемый потенциал Рис. 206. <a href="/info/6516">Поляризационная диаграмма</a> короткозамкнутого элемента пленка-пора, поясняющая влияние утолщения пленки на измеряемый потенциал

Если полностью запассивированный металл перестать поляризовать, выключая ток, то изменение потенциала металла во времени имеет характер, аналогичный представленному на рис. 217. Спад потенциала после выключения поляризационного тока соответствует разряду двойного электрического слоя, затем на кривой появляется горизонтальный участок, соответствующий растворению пассивной пленки (активации), а затем потенциал падает до значения стационарного потенциала коррозии активного железа.  [c.316]

Очень ценные сведения о кинетике электродных реакций коррозионных процессов дают поляризационные кривые V = / (i) (см. с. ]94), которые получают, измеряя потенциал электрода из исследуемого металла при анодной и катодной поляризации его (пропускание тока возрастающей силы прямого и обратного направления) от внешнего источника постоянного электрического тока на установках, подобных изображенной на рис. 345.  [c.456]

Для исследования состояния поверхности металлических образцов и процессов адсорбции на ней, а также свойств окисных и защитных изоляционных пленок на поверхности металла применяют емкостно-омический метод (рис. 358). Емкость и сопротивление исследуемого электрода определяют компенсационным методом — подбором соответствующих величин емкости и сопротивления Rs на мостике переменного тока с осциллографом в качестве нуль—инструмента. В электрохимических исследованиях этот метод сочетают с поляризационным методом, измеряя импеданс (полное активное и реактивное сопротивление цепи переменного тока) при различных значениях потенциала исследуемого электрода (см. 166).  [c.465]

Построим поляризационную диаграмму коррозии для этих двух электродов (рис. 23). Если бы промежуточный (третий) электрод не был подключен к системе, то установился бы потенциал о. Если начальный потенциал промежуточного электрода 2 отрицательнее о, то этот электрод будет работать анодом, в противном случае — катодом. В рассматриваемой нами трехэлектродной системе промежуточный электрод должен работать катодом.  [c.57]

Поляризационные диаграммы называемые иногда диаграммами Эванса,—это графики зависимости потенциала от логарифма тока или плотности тока. Впервые они были предложены У. Р. Эвансом из Кембриджского университета (Англия), который продемонстрировал полезность таких диаграмм для предсказания коррозионного поведения металлов [8]. Для получения поляризационной диаграммы берут исследуемый электрод ( рабочий электрод), электрод сравнения и вспомогательный электрод, обычно платиновый. Изображение электрохимической ячейки вместимостью 1 л, которая широко используется в коррозионных лабораториях, представлено на рис. 4.6. В ячейку помеш,ен барботер для деаэрации раствора или насыщения его газом.  [c.59]

Роджерс и Роу [35] провели систематическое исследование влияния различных факторов на коррозию в рассолах нефтяных скважин. Коррозия в рассолах, содержащих сероводород, вначале невелика, но затем она ускоряется, так как сталь покрывается сульфидом железа, и образуются питтинги. Лабораторные исследования показывают, что в первой стадии катодом является легкополяризуемый водородный электрод с высоким значением потенциала, а во второй — роль катода выполняет труднополяри-зуемый электрод из сернистого железа, имеющий низкий потенциал. Поляризационные измерения показывают, что в рассолах, содержащих углекислый газ, для сдвига потенциала стального катода требуются значительно меньшие токи, чем в рассолах, содержащих сероводород. Защитные токи зависят, до некоторой степени, от значения pH среды, но в большей мере от наличия пленки сульфида железа. Трудность поляризации электрода из сульфида железа и значительный коррозионный ток приводят при больших катодных поверхностях к высоким скоростям коррозии и небольшому питтингообразованию. В среде, содержащей углекислый газ, легкая поляризуемость приводит к малым скоростям коррозии, если соотношение поверхностей катод анод мало, или к большим скоростям коррозии и питтингам, — если соотношение катод анод велико.  [c.197]


Предположим, что железо в 1-н. растворе НгЗО поляризуется анодно при помощи прибора, называемого потенциоста-т о м, который автоматически регулирует ток таким образом, что поддерживается постоянный потенциал. Поляризационная кривая, полученная этим методом, приведена на рис. 25 [4]. Она называется потенциостатической поляризационной кривой. Кривая, при снятии которой используется, например, схема, приведенная на рис. 16, где ток поддерживается постоянным, а потенциал принимает значения, соответствующие току, называется  [c.63]

Если кривые (VkUp и (Уа)обр на рис. 183 — это кривые катодной и соответственно анодной поляризации материалов катодной и анодной фаз металла, а измеренный потенциал корродирующего гетерогенного металла равен V , то точки пересечения горизонтали, проведенной на уровне этого потенциала с катодной и анодной поляризационными кривыми дают плотности тока на катодной и анодной t a фазах.  [c.273]

Таким образом, метод состоит в измерении реальных поляризационных кривых V — / (/)внешн (пунктирная кривая на рис. 191) и определении тока саморастворения металла (по коррозионным потерям Ат) /внутр при различных постоянных значениях потенциала V = onst с применением потенциостата. Дважды нанеся на график рис. 191 последние значения (один раз, откладывая их от оси ординат, а второй — прибавляя к реальной поляризационной кривой), получим идеальную коррозионную диаграмму (сплошные линии на рис. 191).  [c.284]

Описанный выше метод может быть использован и при наличии поляризационных кривых, полученных упрощенным методом, при котором измеряют силу тока / и разность потенциалов ДУ между двумя одинаковыми электродами из одного и того же металла, помещенными в электролит и одновременно катодно- и анодно-поляризуемыми от внешнего источника тока. Измерение омического сопротивления электролита исследуемой двухэлектродной системы / внутр с помощью мостика переменного тока позволяет определить омическое падение потенциала в электр05ште измерительной ячейки АУ = внутр/ и рассчитать поляризационный сдвиг потенциалов  [c.286]

На рис. 210 приведена стационарная анодная поляризационная кривая для железа в 1-н. H2SO4, измеренная при помощи по-тенциостатического метода, который обеспечивает такие условия опыта, когда потенциал электрода не меняется во времени в результате изменений состояния электрода и связанных с этим изменений силы тока.  [c.305]

Рис. 210. Анодная поляризационная кривая для железа в UH, H2SO4 при 25° С, измеренная потен-циостатическим методом — потенциал полной пассивности) Рис. 210. <a href="/info/534329">Анодная поляризационная кривая</a> для железа в UH, H2SO4 при 25° С, измеренная потен-циостатическим методом — <a href="/info/9373">потенциал полной</a> пассивности)
Стационарные поляризационные кривые при наличии на них падающих характеристик (что наблюдается, например в случае пассивирующихся металлов, когда сдвиг потенциала в положительном направлении сопровождается уменьшением скорости растворения), не могут быть измерены с помощью упомянутого выше гальваностатического метода измерения. Для их измерений используют потенциостатический метод — измерение зависи-  [c.456]

При поляризационных измерениях с помощью потенциостата возможно использование автоматической развертки потенциала для его непрерывного смещения с заданной скоростью — потен-циодинамтеский метод. Увеличение скорости измерения потен-циодинамических поляризационных кривых позволяет более тонко изучить механизм процесса (В. М. Княжева, А. И. Голубев и М. X. Кадыров).  [c.458]

Для изучения скорости и характера элсмстродных процессов электрод искусственно нагружают током определенной величины и измеряют при этом потенциал исследуемого электрода. Зависимость потенциала электрода от плотности проходящего через него тока, изображенная графически, называется поляризационной кривой.  [c.33]

В зависимости от того, в какую сторону от стационарного потенциала смещать потеициал электрода, проиуская через него ток, можно получать анодные или катодные поляризационные  [c.33]

В активном состоянии металлы поляризуются аиодно сравнительно слабо, что видно из пологого хода начального участка АБ анодной поляризационной кривой (рис. 14). На участке кривой АБ протекает процесс активного растворения металла с незначительным смещением потенциала в положительном иаправ-  [c.34]

Если для электродных реакций — анодной и катодной — известны поляризационные кривые и соотношение площадей электродов, то поляризационная диаграмма коррозии, построенная на основании этих данных, может дать наиболее исчерпывающую характеристику данного коррозионного процесса (рис. 20), На оси абсцисс здесь отложен корро-зиоииый ток / (величина, пропорциональная скорости коррозии), на оси ординат— отрицательные значения потенциалов электродов — Е. Начальное пололсенне потенциалов и Е соответствует разомкнутому состоянию электродов (бесконечно большое омическое сопротивление) точка пересечения анодной и катодной кривых S соответствует короткому замыканию анода II катода без всякого омического сопротивления. Очевидно, что короткому замыканию будет соответствовать максимальный коррозионный ток /шях- В этом случае эффективные потенциалы катода и анода сближаются до общего потенциала коррозии Ех.  [c.52]

До сих пор, как при построении поляризационных кривых, так и при построении коррозионных диаграмм мы пользовались так называемыми идеальными поляризационными кривыми. За начальный потенциал анодной кривой Д п[шнимался равновесный потенциал анодного металла, за начальный потенциал катода — равновесный потенциал катодного процесса в данных условиях. В реальных случаях даже при отсутствии тока имеется достаточно причин для отклонения этих потенциалов от раврговеспых значений. Такими причинами могут быть, например, образование или удаление защитных пленок, накопление на поверхности электродов различных включений и т. д.  [c.54]


Поляризационные кривые, относяпдисся к реальным электродам, отличаются от идеальных кривых. На реальном электроде, опущенном в раствор, протекает како.й-то коррозионный процесс. В результате работы анодных и катодных участков на электроде устанавливается потенциал, промежуточный между начальными потенциалами анодных и катодных участков. Реаль-  [c.54]

Пересечение идеальных поляризационных кривых, построенных на основании реальных (экспериментальных) поляризационных кривых, определяет величину тока коррозии, обусловленную не наложением внешнего тока, а работой внутренних микрогальва-нических пар. Реальные поляризационные кривые получают путем смещения потенциала электрода от Екарр в анодную или катодную сторону за счет тока от внешнего источника. При малых внешних токах реальные и иде-  [c.55]

В последнее время а ряде работ показана возможность применения анодной защиты металлов и сплавов, если только они склонны к пассивации. Характерная потен-циостатическая анодная поляризационная кривая пассивирующихся металлов приведена на рис. 206. При достижении величины потенциала 1 и соответственно тока /1 начинается пассивация металла. При смещении потенциала до значения 2 металл полностью пассивируется при этом он растворяется с очень небольшой скоростью, соответствующей плотности тока (ток полной пассивации). На анодной кривой имеется широкая область потенциалов, от 2 до 3, в которой сохраняется устойчивое пассивное состояние.  [c.307]

Поляризационные кривые позволяют изучить кинетику электродных процессов, величину защитного тока при электрохимической защите, явление пассивности и др. Существует два способа снятия поляризационных кривых гальваностатический и потен-циостатический. Гальваностатический метод заключается в измерении стационариого потенциала металла при пропускании через него тока определенной плотности. По ряду значений потенциалов при соответствующих плотностях поляризующего тока строят кривые катодной или анодной поляризации, т. е. зависимости Е = /(г к) или Е = /(/-г).  [c.342]

При построении / поляризационных диаграмм (например, рис. 4.7) по экспериментальным данным обычно сначала определяют потенциал коррозии ор в отсутствие внешнего тока. Далее анодно или катодно поляризуют рабочий электрод для построения одной из пунктирных линий на диаграмме. Затем процесс поляризации повторяют (с обратной полярностью внешнего тока) и строят вторую пунктирную линию. С помощью потенцио-стата поляризацию можно выполнить ступенчато (потенциостати-чески) или непрерывно (потенциодинамически). Получив зависимости Е от логарифма внешнего тока в областях положительнее и отрицательнее коррозионного потенциала, строят полную поляризационную диаграмму, как показано на рис. 4.7 для металлам.  [c.60]

Из поляризационной диаграммы медно-цинкового элемента (рис. 4.2) видно, что если за счет внешней поляризации сместить потенциал цинка до потенциала анода при разомкнутой цепи, то потенциал обоих электродов будет одинаков и цинк не будет корродировать. На этом основана катодная защита металлов — эффективный практический способ свести коррозию к нулю (этот вопрос рассмотрен в гл. 12). Внешний ток прилагают к корроди-  [c.68]

Предположим, что анодом служит железо, погруженное в 1 и. H2SO4. Анод расположен так, что при постепенном возрастании потенциала соответствующий поляризационный ток достигает значения, которое требуется для поддержания преобладающего потенциала по отношению к какому-либо электроду сравне ия. Регулировать ток можно вручную или, лучше, с помощью потен-циостата. Полученная поляризационная кривая представлена на рис. 5.1. Она называется потенциостатической поляризационной кривой, в отличие от гальваностатической кривой (рис. 5.2), полученной, например, с помощью схемы, в которой ток поддерживается постоянным, а потенциал изменяется в соответствии с током (см. рис. 4.3, а).  [c.72]


Смотреть страницы где упоминается термин Потенциал поляризационный : [c.55]    [c.30]    [c.272]    [c.293]    [c.457]    [c.459]    [c.33]    [c.36]    [c.37]    [c.53]    [c.300]    [c.343]    [c.446]    [c.447]    [c.69]    [c.86]    [c.94]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.253 ]



ПОИСК



Измерение поляризационных потенциалов

Измерение поляризационных потенциалов подземных стальных трубопроводов в зоне действия средств электрохимической защиты

Поляризационные кривые и кривые потенциал — время

Пурбе диаграммы (потенциал pH), пример построения при снятии поляризационной

Ток поляризационный



© 2025 Mash-xxl.info Реклама на сайте