Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анодная пассивация механизм

МЕХАНИЗМ ВОЗНИКНОВЕНИЯ ПАССИВНОГО СОСТОЯНИЯ 1. АНОДНАЯ ПАССИВАЦИЯ  [c.9]

При потенциалах более положительных потенциала частичной пассивации механизм процесса меняется, его скорость перестает зависеть от скорости катодной реакции и определяется уже скоростью анодной реакции. Поскольку при потенциалах, характерных для активно-пассивного состояния электрода, соотношение между пассивной и активной частями поверхности не меняется и, следовательно, об увеличении эффективности катодного процесса говорить не приходится, уменьшение скорости растворения при дальнейшем смещении потенциала в положительную сторону можно объяснить лишь тем, что ингибитор начинает оказывать непосредственное влияние на анодную реакцию, замедляя ее. Как видно, имеется принципиальное различие в механизме действия изученных ингибиторов в случаях, когда электрод находится в активном и активно-пассивном состояниях в первом случае инги-бито ры увеличивают эффективность катодного процесса, не вмешиваясь в анодный, во втором — уменьшают скорость анодного процесса, не вмешиваясь в катодный.  [c.62]


Таким образом, в зависимости от металла и условий пассивации, механизм пассивации может сильно изменяться от адсорбции кислорода на отдельных точках поверхности через образование сплошных хемосорбционных слоев кислорода и их утолщения до защитных барьерных слоев, а в некоторых случаях процесс может протекать и с образованием более утолщенных слоев оксида. При этом торможение анодного процесса мол ет осуществляться как вследствие изменения скачка потенциала в двойном слое или блокирования активных точек металла, так и в результате униполярной проводимости возникающих хемосорбционных или барьерных слоев оксидов. По-видимому, только для очень толстых пленок следует предусматривать возможность кроющего (изолирующего) торможения. Наиболее совершенными защитными пленками являются те, которые обеспечивают достаточно полное торможение анодного процесса ионизации металла уже при образовании хемосорбционного слоя.  [c.54]

Барьерный механизм по своему существу должен быть чувствителен к конкретной природе и состоянию поверхностного слоя, включая покровные пленки, и поэтому при взаимодействии тела с активной средой может приводить как к повышению пластичности, так и к ее снижению (с упрочнением) в зависимости от результата протекания поверхностных химических (электрохимических) реакций. Так, при растяжении монокристалла никеля в растворе серной кислоты под анодным током поляризации при потенциалах пассивации наблюдалось упрочнение и снижение пластичности по сравнению с деформацией на воздухе вследствие образования прочных фазовых окисных пленок (толщиной около 5 нм) [127] в результате анодной реакции в области потенциалов пассивации.  [c.144]

К анодным ингибиторам, сильно тормозящим анодную реакцию, относятся ингибиторы окислительного типа, например нитрит натрия. Эта соль при введении в электролит в небольших количествах сдвигает потенциал стали в положительную сторону, переводя ее в пассивное состояние, причем начальный потенциал стали смещается сразу же примерно на 0,2 В, а через 10 сут более чем на 0,7 В. Такой сильный сдвиг потенциала во времени говорит о химической природе связи металла с ингибитором, так как при физической адсорбции процесс поляризации протекал бы намного быстрее. При высоких концентрациях нитрита натрия скорость катодного процесса может возрасти так, что возникает пассивация по механизму ускорения катодной реакции.  [c.81]


Перед выполнением работы необходимо ознакомиться 1) е поляризацией электродов при электролизе 2) с компенсационным методом измерения э. д. с. гальванических элементов и вычислением электродных потенциалов 3) с током пассивации и анодной пассивностью при электролизе 4) с механизмом анод-142  [c.142]

Когда ингибирование коррозионных сред осуществляется с помощью соединений, изменяющих преимущественно кинетику анодной реакции, а этот механизм является в нейтральных электролитах наиболее эффективным, то ингибирование тесно связано с пассивацией. Оба эти процесса зависят от природы пассивирующих слоев, возникающих на поверхности металла, а также характера и кинетики катодного процесса, обеспечивающего перевод металла в пассивное состояние.  [c.9]

Необходимым условием пассивации металла по электрохимическому механизму является превышение плотности внешнего анодного тока или внутреннего катодного тока, возникающего за счет окислительно-восстановительной реакции, над плотностью тока пассивации t n- Уменьшения коррозии можно также добиться, сообщив металлу потенциал, близкий к равновесному потенциалу металла в данной среде фа. Этого можно достигнуть либо посредством катодной поляризации, либо посредством уменьшения окислительно-восстановительного потенциала среды, например удалением кислорода из системы.  [c.31]

Первые два пути уменьшения коррозии основаны на замедлении анодной реакции и поэтому могут рассматриваться как классические случаи пассивации. Третий путь заключается в ускорении ингибиторами катодной реакции до такой степени, при которой становится возможной пассивация металлов такие ингибиторы можно в известном смысле также отнести к пассиваторам. Четвертый и пятый пути основаны на замедлении ингибиторами катодной реакции. Это приводит к смещению потенциала металла в отрицательную сторону, что в соответствии с закономерностями электрохимической кинетики должно уменьшить скорость коррозии. Однако этот механизм ничего общего с механизмом пассивирования не имеет.  [c.32]

Метод изучения химической пассивации заключается в исследовании зависимости скорости растворения металла от потенциала, который задается электроду не с помощью внешней анодной поляризации, а введением в электролит химических соединений. Этот метод позволяет, судя по результатам, которые будут изложены ниже, получать ценную информацию о механизме действ]]я ингибиторов вблизи стационарных потенциалов, чего не позволяет метод внешней анодной поляризации, сильно сдвигающий потенциал в положительную сторону.  [c.55]

То, что некоторые ингибиторы (фосфаты и бензоаты) оказываются эффективными лишь в присутствии кислорода, также укладывается в рассматриваемый выше механизм защиты. Поскольку пассивация в этом случае остается окисной и является по своей природе электрохимической, необходим катодный деполяризатор, который является движущей силой для анодного процесса.  [c.66]

Если происходит пассивация электрода (такой механизм действия ингибиторов в нейтральных средах встречается чаще всего и является наиболее эффективным), то из-за сокращения активной поверхности электрода общая коррозия всегда уменьшается. Однако из этого совсем не следует, что интенсивность коррозии также падает. Все зависит от того, что уменьшается в большей степени — общая коррозия или активная часть электрода. Если степень покрытия электрода 0 пассивирующим окислом выше степени уменьшения суммарного коррозионного эффекта I, то интенсивность коррозии i должна возрасти. Степень уменьшения силы тока зависит не только от 0, но и от характера контроля скорости коррозионного процесса и поляризационных характеристик системы металл — электролит при протекании в ней катодной и анодной реакций.  [c.89]

Однако наиболее правильным, учитывающим как изменение катодного процесса, так и анодного, будет объяснение, которое основано на развитых выше представлениях о пассивации. На основании предполагаемого нами механизма действия ионов электроположительных металлов можно сформулировать общие условия, необходимые для проявления эффективного защитного действия подобных добавок в коррозионный раствор.  [c.170]


Местные нарушения сплошности заш,итных пленок также являются причиной возникновения локальной коррозии. Чаще всего этот механизм реализуется на сплавах, склонных к пассивации. Нарушение по каким-либо причинам пассивного состояния на отдельном участке поверхности приводит к тому, что анодные реакции концентрируются на этом месте и протекают с относительно большой скоростью. Характерным локальным процессом такого вида является питтинговая коррозия в ее развитии играет большую роль и местное изменение объемных свойств электролита.  [c.14]

Теория дифференциальных анодных кривых позволяет более глубоко представить электрохимический механизм этих явлений. Анодные поляризационные кривые тела зерна или блока зерна и надреза различаются как значением первого критического анодного потенциала (потенциалом пассивации), так и значением первого критического анодного тока (током пассивации).  [c.61]

Механизм и особенности структурной коррозии гетерогенного сплава в агрессивных средах (полностью поляризованные системы) зависит от величины стационарного потенциала сплава и его расположения по отношению к равновесному потенциалу, потенциалу пассивации и потенциалу перепассивации различных структурных составляющих, а также от их анодной поляризуемости.  [c.81]

При этом предполагается, что эффективная работа большого количества микрокатодов может привести к анодной пассивности. Вероятность такого механизма остается весьма проблематичной, если учесть, что железо поддается с трудом анодной пассивации даже в весьма тонких слоях электролитов (см. рис. 79). Для наступления анодной пассивности требуются исключительно большие плотности тока (5—10 mqi m ), которые навряд ли могут быть достигнуты за счет восстановления кислорода, который может  [c.253]

Таким образом, ингибиторы по их влиянию на щелевую коррозию можно разделить на две группы одна из них при концентрациях, достаточных для защиты открытой поверхности от коррозии, приводит к интенсивной жоррозии металла в щели другая — уменьщает коррозию металла в щелях при любых концентрациях, так же как и на открытой поверхности. К первой группе относятся нитрит натрия, бихромат калия, двузамещенный фосфат и любые другие ингибиторы, которые защищают металл -благодаря частичной пассивации электрода. Ко второй группе относятся сульфат цинка, нитрат кальция и другие ингибиторы, защищающие металлы от коррозии благодаря замедлению скорости катодной реакции. К этой группе ингибиторов можно, очевидно, отнести и такие анодные ингибиторы, механизм действия которых не связан с частичной пассивацией электрода, а обусловлен лишь уменьшением скорости анодной реакции, например, метаванадат натрия.  [c.105]

Несомненно, что механизм действия кислорода, освобождающегося из воды при электрохимическом окислении и растворенного в воде, различный. Напрашивается вывод, что растворенный кислород пассивирует поверхность по-иному, чем кислород, освобождающийся из воды за счет реакции электрохимического окисления. Очевидно, растворенный кислород облегчает анодную пассивацию благодаря адсорбции или слабому химическому взаимодействию с поверхностью металла, не приводящему к образованию двухзарядного кислорода. Возможно, что на поверхности металла находятся атомы кислорода, потерявшие лишь один электрон. В том и другом случае количество освобождающихся электронов при пассивации должно быть меньше, чем при образовании фазового окисла.  [c.317]

По другому, электрохимическому, варианту предполагается, что механизм адсорбционной пассивации заключается в том, что адсорбируемые на поверхности металла кислородные атомы образуют электрические диполи за счет частичной ионизации кислородных атомов электронами металла положительный конец диполя располагается в металле, а отрицательный — в двойном слое раствора. Образование сложного адсорбционно-ионного скачка потенциала (фиг. 30) вызывает сдвиг общего электродного потенциала в положительную сторону и ионизация металла уменьшается. Количество кислорода и при этом варианте пассивации меньше, чем требуется по расчету для создания мономолекул яр кого слоя. Характерным примером зависимости пассивности от количества кислорода, адсорбированного поверхностью металла по вышеупомянутому механизму, является анодная пассивация железа в щелочных растворах.  [c.62]

Механизм повышения коррозионной устойчивости сплавов дополнительным их легированием катодными присадками заключается предположительно в облегчении наступления пассивации вследствие дополнительной анодной ноляризации сплава  [c.68]

Нитрит натрия. Как уже отмечалось, самый простой, доступный и весьма эффективный ингибитор для защиты стали в воде — нитрит натрия. Механизм его действия состоит в торможении анодного процесса, а эффективная защита может быть достигнута только тогда, когда анодный процесс подавлен полностью. Замедление анодного процесса происходит за счет пассивации железа оксидной пленкой FejOg, образовавшейся на поверхности стали при окислении нитритом. При малых концентрациях нитрита натрия в водном растворе большая часть поверхности экранируется и скорость анодного процесса на открытых участках увеличивается, так как облегчается процесс восстановления кислорода.  [c.82]

Механизм межкристаллитной коррозии алюминиевых сплавов при низких температурах достаточно подробно изучен А. И. Голубевым [111,205]. Рассматривая причины межкристаллитной коррозии сплавов алюминия высокой чистоты при температурах выше 160° С, можно предположить следующее. На границах зерен, даже в очень чистом алюминии, различные примеси содержатся в боль-щем количестве, чем в центре зерна. Скорость катодного процесса на этих примесях возрастает, что приводит к смещению потенциала участков зерна, прилегающих к границе, в положительную сторону. Поскольку при высоких температурах чистый алюминий (при стационарном потенциале) подвержен коррозии в активной области, смещение потенциала в положительную сторону приводит к увеличению скорости коррозии на участках по границам зерен. При более значительном смещении потенциала в положительную сторону вследствие анодной поляризации либо при легировании элементами с малым перенапряжением водорода до значений потенциала, отвечающих области пассивации, межкристаллитная коррозия не развивается, что и подтвердилось при испытаниях. Из этого предположения следует, что монокристаллы чистого алюминия не должны подвергаться межкристаллитной коррозии в воде при высоких температурах. И, действительно, в воде с pH 5—6 при температуре 220° С монокристаллы алюминия в отличие от поликристаллов межкристаллитной коррозии не подвергались [111,206]. Попытка объяснить возникновение межкристаллитной коррозии алюминия в воде при высоких температурах растворением неустойчивых интерметал- лидов, выпадающих по границам зерен, связана с затруднениями. Дело в том, что легирование алюминия никелем, железом, кремнием и медью повышает стойкость сплавов по отношению к межкристаллитной коррозии, ВТО время как растворение неустойчивых интерметал-лидов, образованных этими легирующими компонентами (особенно последним), должно способствовать развитию межкристаллитной коррозии. Алюминий чистоты 99,0% при температуре свыше 200° С подвергается межкристаллитной коррозии не только в воде, но и в насыщенном водяном паре. Если же алюминий легировать никелем (до 1 %) и железом (0,1—0,3), межкристаллитная коррозия не развивается и в этом случае [111,172]. В результате коррозионного процесса размеры плоских образцов иногда увеличиваются на 15—20% [111,206].  [c.205]


Для правильного представления о механизме этого вида коррозии нео бходимо принять во внимание, что контролирующим электрохимическим фактором коррозионного растрескивания является анодный процесс. Тот факт, что появление коррозионной трещины сопровождается сильным (скачкообразным) уменьшением анодной поверхности, а при последующем развитии трещины поляризуемость металла уменьшается более медленно, свидетельствует о том, что эффективным анодом при коррозионном растрескивании является не вся трещина, а сравнительно небольшой участок, сосредоточенный в вершине трещины. Этот участок может совершенно исчезнуть, если будет обеспечена надежная пассивация металла при значительной же его депассивацпи участок сильно расширится. Таким образом, коррозионное растрескивание будет ликвидировано либо при условиях, обеспечивающих отсутствие всякой коррозии (полная лассива-ция металла), либо, наоборот, при существенном развитии общей коррозии (при депассивации металла).  [c.178]

Молибден, который является стабилизатором ферритной фазы, способствует пассивации стали (повышает нижнюю границу потенциала питтингообразования) и тем самым повышает коррозионную стойкость. Например, сталь 18/8 Мо обладает высокой коррозионной стойкостью даже в растворах H2SO4. Добавка Мо способствует также повышению анодной поляризуемости, возможно, вследствие адсорбции на поверхности стали образующихся продуктов коррозии, но механизм действия Мо, очевидно, иной, чем у Ni, так как молибден не только уменьшает питтингообразование, но и снижает вероятность подповерхностной коррозии.  [c.26]

При анодных потенциалах Ре Si, и Со SI практически не растворяются, очевидно, вследствие бысфой пассивации поверхности за счет выделения SLOg. Для Ре SI и oSi, отсутствует область активного растворения, характерная для Ре и Со. Механизм анодного процесса для соединений определяется неметаллическим компонентом - кремнием, а скорость анодной реакции зависит от кристаллографической ориентировки поверхности электрода.  [c.14]

При анодной поляризации меди, по данным Есина [66], замедленной стадией также является процесс ионизации металла, Эршлер [67] тоже предполагает, что растворение платины происходит по механизму замедленного разряда. Кабанов и Лейкис [68], изучавшие процесс электрохимического растворения и пассивации железа в щелочи, установили, что зависимость перенапряжения от плотности тока описывается уравнением  [c.59]

Возможность реализации рассмотренного механизма пассивации железа за счет кислородных соединений становится еще более вероятной, если принять механизм анодного растворения, предложенный Колотыркиным, Кабановым, Бонгоффером, Бокрисом, Лоренцем, Хойслером [5—10] и заключающийся в непосредственном участии компонентов агрессивной среды в элементарных актах анодного растворения металлов.  [c.13]

Знак фотоо твета указывает, какая из двух избыточных против стехиометрии компонент — металлическая или кислородная — преобладает, а амплитуда фотоответа позволяет определить, насколь ко одна избыточная компонента превышает другую. Таким образом, измеряя скорость анодного окисления металла и одновременно контролируя изменение полупроводниковых свойств окисных фаз, возникающих на поверхности металла, можно получить ценную информацию о механизме растворения и пассивации.  [c.21]

Механизм этого явления можно объяснить тем, что благодаря пассивации значительной части поверхности увеличивается катодный ток восстановления кислорода и благодаря внутренней анодной, поляризации ускоряется анодная реакция на активной части электрода. Можно считать, что при потенциале частичной пасси-  [c.57]

Объяснить это можно следующим образом механизм действия нитро бензоата гексаметиленамина обусловлен, как было выше показано, высоким окислительно-восстановительным потенциалом системы. Поэтому можно думать, что возникающий при восстановлении ингибитора ток преимущественно концентрируется в порах первичной окисной пленки, облегчая пассивацию. В отсутствие 0 киси0й пленки этот же анодный ток распределяется на большую поверхность, что уменьшает поляризуемость и затрудняет достижение потенциала полной пассивации.  [c.65]

В большинстве работ, посвященных механизму защиты железа от коррозии фосфатами, высказывается мнение, что фосфатный слой осаждается из электролита, а пассивирующий окисел возникает за счет взаимодействия металла с кислородом. Роль вторичного осажденного из электролита фосфата заключается в снижении скорости растворения окисного слоя. В работах [47] было показано, что в присутствии фосфатов на анодной поляризационной кривой имеется два потенциала пассивации один из них смещен на 0,2 В в отрицательную сторону по сравнению с потенциалом обычной пассивации, наблюдаемым в боратном буфере, не содержащем фосфатов. Из этого делается вывод, что в фосфатных растворах переходу железа в пассивное состояние предшествует специфическая пассивация, обусловленная вторичным осаждением фосфата металла из раствора. Накопление на поверхности стали плохорастворимого фосфата железа создает благоприятные условия для обычной окисной пассивации.  [c.66]

Таким образом, благодаря специфической адсорбции неорганических ингибиторов пассивация, как уже указывалось, может быть достигнута без восстановления самих ингибиторов. Обнаруженный эффект памяти у стали после воздействия ингибиторов указывает на возникновение электрического поля в окисле. Подтверждением выдвигаемого механизма могут служить данные по электрохимической пассивации стали с помощью внешней анодной поляризации с одновременным изменением КРП после извлечения электрода из электролита. Было обнаружено, что при поляризации стали в интервале потенциалов от —0,4 до +0,55 В кривая фэл=/(А1 к) внешне сходна с обычной потенциостатической кривой фэл=f(tKopp), где г корр — плотность тока коррозии, определенная по потерям массы (рис. 2,28).  [c.82]

По мере смещения потенциала металла за -потенциал частичной пассивации начинают все более и более проявляться пассивирующие свойства нитрит-ионов по отношению к анодной реакции, что облегчает переход металла в пассивное состояние. В пользу этого механизма указывает то обстоятельство, что степень заполнения ингибитором поверхности и, следовательно, исключение ее из сферы анодной (реакции растет лишь до потенциала частичной пассивации. В области нотенциалов, характерной для активнопассивного состояния, степень заполнения поверхности ингибирующим ионом не меняется, и, значит, эффективность катодного процесса остается постоянной. Падение скорости анодного процесса по мере смещения потенциала в положительную сторону является лишь следствием проявления пассивирующих свойств анионов по отношению к анодной реакции.  [c.174]

Явление транспассивности или перепассивации очень характерно для хрома и нержавеющих сталей. Его можно наблюдать при анодной поляризации в области высоких положительных потенциалов в растворах серной, азотной и других кислот. Пере-пассивация проявляется и без наложения анодной поляризации в высокоокислительных средах концентрированной азотной кислоте при повышенных температурах, в азотной кислоте с добавкой окислителей (например, бихромата) и др. Механизм процесса перепассивации, как уже указывалось ранее (см. стр. 46), обусловлен образованием окислов высшей валентности, хорошо растворимых и вследствие этого не пассивирующихся [77, 78]. Явление перепассивации наблюдается и для такого металла, как молибден [99, 100], причем потенциал перепассивации его лежит при значительно менее положительных значениях, чем у хрома. Это свойство легирующего компонента проявляется в спла-  [c.64]


Одно из объяснений механизма ингибирующего действия заключается в том, что окисляющие ингибиторы так легко восстанавливаются, что большие локальные катодные токи вызывают пассивацию смежных анодных областей. Поэтому окисляющие ингибиторы иногда называют пассиваторами [88]. Этот термин согласуется с наблюдаемым повышением потенциала. Для неокислительных ингибиторов такой механизм менее вероятен. В случае ин гибирования в фосфатном растворе образуется пленка, содержащая нерастворимые пробки , состоящие из фосфата трехвалент-лого железа.  [c.141]

В некоторых условиях для металлов и сплавов, склонных к перепассивации (как, например, для коррозионно-стойких сталей), при дальнейшей анодной поляризации при еще более положительных потенциалах за областью перепассивации наблюдается вновь торможение процесса анодного растворения. Это явление получило название вторичной пассивности. В настоящее время, несмотря на ряд работ, посвященных исследованию вторичной пассивности, главным образом, нержавеющих сталей и никеля [20, с. 5] остается еще не вполне ясным механизм этого явления. Согласно представлениям Т. Хоймана и сотрудников вторичная пассивность коррозионностойких сталей обусловлена пассивацией железа, содержание которого на поверхности возрастает вследствие избирательного растворения хрома. М. Пражак и В. Чигал считают, что явление вторичной пассивации связано с образованием на поверхности сложного оксида (содержащего хром и железо) типа шпинели.  [c.59]

Рис. 1. Анодная потенциостатическая кривая, объясняющая механизм изменения ингибиторами скорости коррозии. АБВГД — анодная кривая для исходного электролита АВГД — анодная кривая для случая, когда ингибитор тормозит анодную реакцию ЕЖ — катодная поляризационная кривая для реакции восстановления кислорода ИК — катодная кривая для ингибитора, восстанавливающегося с малой скоростью ЛМ — катодная кривая для ингибитора, восстанавливающегося с большой скоростью фь q>2, Фз, ф4 — стационарные потенциалы г ь I z, I3, i 4 — коррозионные токи inii — ток полной пассивации Рис. 1. <a href="/info/138136">Анодная потенциостатическая кривая</a>, объясняющая механизм изменения ингибиторами <a href="/info/39683">скорости коррозии</a>. АБВГД — <a href="/info/168213">анодная кривая</a> для исходного электролита АВГД — <a href="/info/168213">анодная кривая</a> для случая, когда ингибитор тормозит <a href="/info/167812">анодную реакцию</a> ЕЖ — катодная <a href="/info/116215">поляризационная кривая</a> для реакции <a href="/info/160783">восстановления кислорода</a> ИК — катодная кривая для ингибитора, восстанавливающегося с малой скоростью ЛМ — катодная кривая для ингибитора, восстанавливающегося с большой скоростью фь q>2, Фз, ф4 — стационарные потенциалы г ь I z, I3, i 4 — коррозионные токи inii — ток полной пассивации
Механизм процесса МКК в условиях воздействия окислительных сред (типа азотной кислоты) можно представить следующим образом. В результате неблагоприятных условий термообработки или сварки происходит обеднение границ зерен хромом. Диффузия углерода из твердого раствора к границам зерен протекает гораздо быстрее, чем диффузия хрома. Диффузия углерода идет из всей массы зерна, в то время как хром поступает только с пограничных зон аустенита. Содержание хрома в этих зонах падает настолько, что зона теряет способность к пассивации и подвергается быстрому разрушению в окислительных средах. Разрушение малостойких фаз, обедненных хромом, приводит к накоплению продуктов коррозии с высоким содержанием железа, которые автокаталитически ускоряют растворение границ зерен. В местах выделения и постепенного роста вторичной фазы (на границах различно ориентированных зерен) появляются высокие локальные напряжения. Возникают значительные энергетические различия, которые могут проявляться при снижении анодной поляризации в пограничных зонах между зернами, а также недостаточной пассивации границ зерен.  [c.471]

Нельзя также исключить, что некоторое ослабление водородом границ зерен феррита, особенно у вершины трещины, способствует протеканию анодного механизма щелочного растрескивания. Это растрескивание обусловлено частичной пассивацией поверхности и разрушением защитных пленок по границам зерен. Межкристаллитный характер разрушения вызван электрохимической коррозией, интенсифицированной приложенными напряжениями [47, 218]. Особенно интенсивно щелочное растрескивание при высоком уровне растягивающих напряжений, близком к пределу текучести. Механизм разрушения связывают с хемосорбцией ионов ОН на дефектных местах поверхности, образующих межзеренную границу, и снижением поверхностной энергии у вершины трещины. Растрескивание сталей в щелочном растворе наблюдается в определенном диапазоне потенциалов (ф = -900... -500 мВ), соответствующем активно-пассивному переходу стали, и области существования растворимого гипоферрита НГеОз, оксидных пленок Fe(0H)2 и FegO . При значениях потенциала Ф -550 мВ обеспечивается стабильная пассивация железа.  [c.347]


Смотреть страницы где упоминается термин Анодная пассивация механизм : [c.23]    [c.241]    [c.65]    [c.294]    [c.80]    [c.29]    [c.61]    [c.64]    [c.170]    [c.342]    [c.65]   
Ингибиторы коррозии (1977) -- [ c.9 ]



ПОИСК



Анодная пассивация

Анодный

Пассивация

Пассивация, механизм



© 2025 Mash-xxl.info Реклама на сайте