Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химическая пассивация

Метод химической пассивации стали применяют в системах охлаждения производственных аппаратов водой высокой степени чистоты [10]. Оборудование таких систем изготовлено из стали. Метод заключается в дозировании в систему кислорода или пероксида водорода.  [c.46]

В этих же системах возможно применение химической пассивации (см. выше), поскольку в них, как правило, используется вода высокой степени чистоты (см. табл. 3).  [c.49]


При реализации нейтрально-кислородного режима для химической пассивации стали в замкнутых контурах с водой высокой степени чистоты содержание кислорода должно быть на уровне 200—300, пероксида водорода 220—280 мкг/кг [9.  [c.85]

Химическая пассивация, применение гидроксида лития  [c.93]

Во многих случаях (например, при нанесении покрытия цинком и кадмием) металлическую поверхность, на которую нанесено покрытие, подвергают химической пассивации с целью предотвращения коррозии в умеренно агрессивной коррозионной среде. Во избежание потускнения из-за атмосферной коррозии можно использовать бесцветный лак (например, при нанесении медного покрытия).  [c.91]

Связь между тщательно нанесенным металлическим покрытием и основным материалом, носящая химический и металлографический характер, как правило, обладает такой высокой прочностью, что практически вряд ли возможна потеря адгезии. Исключения наблюдаются в случае напыляемых металлических покрытий, где связь имеет чисто физическую природу и вызвана механическим сцеплением между шероховатой поверхностью основного материала и напыленным металлом, при нанесении металлических покрытий на пластмассы, когда обеспечивается недостаточная физико-химическая связь с металлом, а также в некоторых химически осаждаемых металлических покрытиях и в большинстве покрытий, получаемых химической пассивацией, где создается только слабая химическая связь.  [c.149]

К физическим критериям относятся 1) диффузионная активность в заданном интервале скоростей пластической деформации и температур 2) способность металла к химической пассивации в заданных условиях среды 3) физико-механические свойства вторичных структур, образующихся в процессе трения.  [c.37]

В случае появления хрупких разрушений необходимо организовать определение агрессивности котловой воды и переход в дальнейшем на работу с химической пассивацией этой агрессивности при систематическом контроле по индикаторам измерение смещений и прогибов, а также температур стенок барабана для выявления первопричин опасных дополнительных механических напряжений, а также систематизацию сведений о разрушениях.  [c.71]

Посвящена проблеме организации противокоррозионной защиты оборудования химических производств. Приведены данные о коррозионной агрессивности водных сред к конструкционным материалам оборудования. Описаны основные методы предупреждения коррозии, основанные на обескислороживании воды, химической пассивации металлов, электрохимической защите, создании защитных покрытий и др. Дана характеристика методов консервации аппаратов.  [c.2]


Рассмотрены методы предупреждения коррозии металла в воде высокой чистоты путем химической пассивации, а также  [c.5]

Ценную информацию о механизме действия ингибиторов можно получить, используя метод химической пассивации [40].  [c.43]

ХИМИЧЕСКАЯ ПАССИВАЦИЯ ИНГИБИТОРАМИ  [c.55]

Метод изучения химической пассивации заключается в исследовании зависимости скорости растворения металла от потенциала, который задается электроду не с помощью внешней анодной поляризации, а введением в электролит химических соединений. Этот метод позволяет, судя по результатам, которые будут изложены ниже, получать ценную информацию о механизме действ]]я ингибиторов вблизи стационарных потенциалов, чего не позволяет метод внешней анодной поляризации, сильно сдвигающий потенциал в положительную сторону.  [c.55]

Метод химической пассивации позволяет получать для металлов, склонных переходить в пассивное состояние, такие же поляризационные диаграммы, которые получаются при внешней анодной поляризации. Эти диаграммы имеют участки, характерные для активного растворения, активно-пассивного состояния и пассивного состояния. На рис. 2,18 представлены кривые зависимости скорости коррозии стали от потенциала, который задавался электроду с помощью различных концентраций едкого натра, силиката, фосфата и пербората натрия. Как видно, закономерность получается такая же, как и при внешней анодной поляризации. В начале диаграммы имеется активная область растворения, в которой смещение потенциала в положительную сторону приводит к увеличению скорости растворения. После достижения определенного потенциала, который назовем потенциалом частичной пассивации, скорость растворения начинает падать. Полная пассивация наступает в присутствии этих ингибиторов практически при одинаковых значениях потенциала (- -0,2-f-+0,25 В).  [c.55]

Другой важный вывод, вытекающий из изложенного, заключается в том, что при химической пассивации потенциал не всегда однозначно определяет скорость растворения. В тех случаях, когда значение потенциала, устанавливающееся на электроде, обусловлено изменением скорости обеих электродных реакций, внешняя анодная поляризация уже не тождественна внутренней анодной поляризации, как это отмечалось в работе [41], где скорость анодной реакции при введении окислителя не менялась. В наших условиях в зависимости от природы адсорбирующегося иона и характера его связи с металлической поверхностью можно при одном и том же потенциале наблюдать самые разнообразные скорости растворения.  [c.63]

Исследование кинетики анодной реакции ионизации металла методом гальваностатической поляризации в буферном электролите (pH = 9) показало, что при добавке 1 г/л вольфрамата наблюдается сильная анодная поляризация стали (рис. 5,13). Малые концентрации ингибитора, хотя и смещают потенциал в положительную сторону, однако не оказывают существенного влияния на анодную поляризуемость стали. Это подтверждает вывод, сделанный при изучении этого же вопроса методом химической пассивации, о преимущественном влиянии малых концентраций ингибитора на эффективность катодного процесса.  [c.168]

Ионы гидроксила свою пассивирующую способность проявляют при достижении потенциала +0,2 В при более отрицательных потенциалах они ускоряют анодную реакцию, так как принимают непосредственное участие в элементарном акте растворения [53]. Образованный ими комплекс в зависимости от потенциала может перейти в раствор или остаться на поверхности металла. Следует отметить, что метод химической пассивации позволяет получить такие же поляризационные характеристики, как при внешней анодной поляризации. Полная пассивация металла наступает при применении любого из этих методов при повышении потенциала до 0,2 В и выше.  [c.132]

Заслуживают внимания новые способы предупреждения коррозии прямоточных котлов блочных электростанций путем химической пассивации поверхности стали кислородом и перекисью водорода.  [c.295]


Для химической пассивации необходимо соблюдение дополнительных условий  [c.30]

Таким образом, влияние ультразвука на пассивацию металлов может быть различным. Механическая пассивация, состоящая в образовании защитных слоев, а также химическая пассивация  [c.536]

Как указывалось в разд. 18.4, нержавеющие стали лучше всего применять в хорошо аэрированных средах, которые способствуют пассивации. Независимо от того, используют ли сплав в контакте с химическими веществами или в атмосферных условиях, его поверхность всегда следует поддерживать чистой — в противном случае начинающаяся коррозия в щелях может привести к питтингу и неравномерной коррозии. Аустенитные нержавеющие стали, которые при охлаждении слишком медленно проходят область температур сенсибилизации, ржавеют в атмосферных условиях.  [c.325]

Плазмохимическое осаждение особенно перспективно для пассивации поверхности приборов, так как высокие температуры при термическом осаждении могут вызвать необратимые химические реакции.  [c.43]

Необходимо также контролировать состав воды, на котором готовится защитный раствор. Чем меньше соле-содержание воды, тем меньше щелочи требуется для полной пассивации металла и тем надежнее защита. Поэтому лучше всего готовить раствор на конденсате. Менее желательно применение химически очищенной воды.  [c.75]

Характер анодных кривых для каждой структурной составляющей и каждого физически неоднородного участка зависит от химического состава этих составляющих, кристаллической структуры, концентрации ионов водорода, температуры, природы и концентрации активаторов, природы и концентрации анодных замедлителей, внутренних напряжений и приложенных внешних напряжений, В зависимости от ряда указанных факторов изменяется равновесный потенциал, потенциалы начала пассивации и полной пассивации, а также потенциал перепассивации и в ряде случаев потенциал пробоя (в присутствии активаторов, внутренних или приложенных внешних напряжений). Одновременно в зависимости от указанных факторов будет изменяться критический анодный ток пассивации и ток в пассивном состоянии.  [c.35]

В разделе Внутренняя защита резервуаров и аппаратов химической промышленности кроме методов катодной защиты приводятся рекомендации и по применению анодной защиты при наличии материалов, подвергающихся пассивации в соответствующих средах. Наряду с анодной поляризацией наложением тока от внешнего источника для достижения пассивного состояния рассматривается и способ защиты с применением ингибиторов.  [c.14]

При электрохимической защите от коррозии резервуаров, сосудов—ре-акторов, транспортных устройств или трубопроводов в химической и нефтеперерабатывающей промышленности часто приходится иметь дело со средами высокой коррозионной активности. Здесь встречаются среды начиная от обычной пресной и более или менее загрязненной речной, солоноватой и морской воды (часто применяемые для охлаждения) или реакционных растворов и сточных вод химического производства и кончая крепкими рассолами, которые нужно хранить и транспортировать при добыче нефти. Целесообразно ли даже при наличии существенных коррозионных влияющих факторов опробовать электрохимическую защиту и какой именно способ лучше всего можно применить — это зависит от конкретных условий в каждом отдельном случае. Так, при наличии материалов, поддающихся пассивации в соответствующих средах, кроме известной катодной защиты может ставиться вопрос и о применимости анодной защиты. Этот способ можно успешно применить в тех случаях, когда потенциал свободной коррозии ввиду слишком слабого окислительного действия среды располагается в области активной коррозии, но при наложении анодного тока от постороннего источника может быть легко смещен в область пассивности и поддержан на этом уровне (см. раздел 2,3.1.2 и рис. 2.12).  [c.378]

Исследование влияния деформации на электрохимические характеристики меди в потенциодинамическом режиме показало, что для поведения меди характерны те же общие закономерности, которые отличают поведение рассмотренных выше металлов деформация сдвигает участки, соответствующие области активного растворения, параллельным переносом в сторону отрицательных потенциалов, а ток пассивации — в сторону увеличения плотности в области максимальных деформаций имеет место возврат, что связано с уменьшением химических потенциалов атомов металла, а следовательно, уменьшением механохимического эффекта.  [c.91]

На этом основании в брошюру включены краткие сведения по теоретической разработке и реализации новых методов предупреждения коррозии, основанных на химической пассивации металла (данные Я. М. Колотыркина, Г. М. Флорианович), по применению комплексонов и других водно-химических режимов и по контролю за их осуществлением (данные Т. X. Маргуловой, О. И. Мартыновой, Ю. М. Кострикина), а также сведения по применению эффективных ингибиторов и способов коррекционной обработки воды (данные В. М. Калек, А. А. Кота, М. Е. Шицмана).  [c.4]

Для котлов с заклепочными соединениями, работающих при давлении выше 0,5 Мн1м , в том случае, если удельный вес щелочных соединений в составе их котловой воды превышает 20%, следует рекомендовать осуществление специальной химической пассивации. Наиболее удобным способом химической пассивации является нитратирование котловой воды путем применения раствора натриевой селитры. Щелочная агрессивность подавляется при дозе селитры, обеспечивающей  [c.240]

Пассивирование с помощью нитробензоатов аминов является, таким образом, типичным примером пассивирования металла за счет ускорения катодной реакции восстановления ингибитора, которая сообщает электроду необходимый потенциал. Каким же образом достигается пассивация при использовании ингибиторов, не обладающих отаслительными свойствами или обладающих таковыми, но восстанавливающихся с большим перенапряжением На этот вопрос можно частично получить ответ, используя метод химической пассивации, а также другие физико-химические методы исследования ингибиторов.  [c.54]


При внешней анодной поляризации трудно отделить пассиваци-онные эффекты, возникающие за счет адсорбции кислорода, от пассивационных эффектов, возникающих за счет адсорбции ингибиторов. Объясняется это тем, что упомянутые эффекты не аддитивны чаще всего внешняя анодная поляризация облегчает адсорбцию ингибирующих анионов и делает прочнее их химическую связь с металлом. Поскольку в реальных условиях применения ингибиторов внешней анодной поляризации чаще всего не бывает, результаты, получаемые при внешней анодной поляризации, следует дополнять или перепроверять методами химической пассивации.  [c.55]

Изучение завясирлости скорости коррозии от потенциала методом химической пассивации показало, что на поляризационной кривой отсутствует участок активного растворения. При введении уже первых порций метавацадата натрия сталь находится на границе активно-пассивного состояния. Поскольку этот ингибитор з широкой области концентраций не изменяет площадь, на которой протекает анодная реакция растворения (см. рис. 2,23), он не увеличивает эффективности катодного процесса. Уменьшение скорости коррозии в условиях, когда потенциал остается постоянным, объ-  [c.171]

Удаление твердых частиц — обработка спиртом с помощью разбрызгивателей, промывка растворителем с п0мощь5о щеток, механическое встряхивание или химическая пассивация.  [c.169]

Химическая пассивация. Я. М. Колотыркиным и Г. М. Флорнановичем [49] впервые показано, что кислород при высоких давлениях и температурах водной среды способен пассивировать сталь и, следовательно, существенно снижать ее кислородную коррозию (рис. 4.8)  [c.130]

Например, при саморастворении титана в концентрированной серной кислоте нами обнаружен на его поверхности окисел TI3O5 [48],. а при окислении на воздухе при комнатной температуре образуется окисел TiO [148]. Состав окисных пленок, образующихся на титане при самопассивации в растворах, а также при анодной пассивации при не слишком высоких положительных потенциалах один и тот же. Этот результат подчеркивает правильность сделанного в последнее время в литературе вывода об отсутствии принципиальной разницы между анодной и химической пассивацией металлов [135], [149].  [c.110]

Теория пассивности уже частично рассматривалась выше, и следует вновь обратиться к этому материалу (см. разд. 5.2). Контактирующий с металлической поверхностью пассиватор действует как деполяризатор, вызывая возникновение на имеющихся анодных участках поверхности высоких плотностей тока, превышающих значение критической плотности тока пассивации /крит-Пассиваторами могут служить только такие ионы, которые являются окислителями с термодинамической точки зрения (положительный окислительно-восстановительный потенциал) и одновременно легко восстанавливаются (катодный ток быстро возрастает с уменьшением потенциала — см. рис. 16.1). Поэтому трудновос-станавливаемые ионы SO или СЮ не являются пассиваторами для железа. Ионы NOj также не являются пассиваторами (в отличие от ионов NO2), потому что нитраты восстанавливаются с большим трудом, чем нитриты, и их восстановление идет столь медленно, что значения плотности тока не успевают превысить /крит-С этой точки зрения количество пассиватора, химически восстановленного при первоначальном контакте с металлом, должно быть по крайней мере эквивалентно количеству вещества в пассивирующей пленке, возникшей в результате такого восстановления. Как отмечалось выше, для формирования пассивирующей пленки на железе требуется количество электричества порядка 0,01 Кл/см (в расчете на видимую поверхность). Показано, что общее количество химически восстановленного хромата примерно эквивалентно этой величине, и, вероятно, это же справедливо и для других пассиваторов железа. Количество хромата, восстановленного в процессе пассивации, определялось по измерениям [4—6] остаточной радиоактивности на промытой поверхности железа после контакта с хроматным раствором, содержащим Сг. Принимая, в соответствии с результатами измерений [7], что весь восстановленный хромат (или бихромат) остается на поверхности металла в виде адсорбированного Сг + или гидратированного  [c.261]

Достоинство процесса хроматирования при эксплуатации изделий с покрытиями — это возможность самовосстановления пассивной пленки в мезтах ее механического нарушения. По данным Т.Ф. Ажогина, во влажной атмосфере происходит процесс вторичного хроматирования ионами СГ2О7, имеющимися на поверхности металла. Пассивация, покрытий может происходить химическим, электрохимическим способом, а также при одновременном наложении ультразвукового поля и с использованием электрогидравлического эффекта.  [c.97]

Влияние легирования титана на его чувствительность к коррозионному растрескиванию изучено недостаточно, однако на основании известных данных можно сделать ряд важных заключений. Непреложн1 1м фактом является повышение чувствительности титановых сплавов к коррозионному растрескиванию при увеличении содержания в них алюминия. Коррозионное растрескивание в водных растворах галогенидов возникает, если содержание алюминия превышает некоторую критическую концентрацию, разную для различных сплавов. Для бинарнь1х сплавов Т1 —А1 эта величина составляет около 4 %. Большинство исследователей объясняют увеличение чувствительности к коррозионному растрескиванию при высоких содержаниях алюминия в сплаве выделением фазы 02 (Т1з А1). Действительно, создание условий для выделения Ог (низкотемпературный отжиг или старение) приводит к резкому снижению и увеличению скорости распространения трещины при одинаковой интенсивности напряжений. Однако повышенное содержание алюминия приводит к коррозионному растрескиванию и в том случае, когда даже самыми чувствительными методами не удается выявить присутствие 02-фазы. Это можно объяснить тем, что алюминий при неблагоприятных термических воздействиях создает микронеоднородность химического состава а-фазы, задерживает репассивацию из-за увеличения критического тока пассивации титана и вьрзывает его охрупчивание вследствие образования упорядоченных твердых растворов.  [c.38]

Все тугоплавкие металлы обладают отрицательными нормальными электродными потенциалами и располагаются в ряду активности левее водорода. Высокая коррозионная стойкость тугоплавких металлов обусловлена образованием на поверхности плотной, химически устойчивой пленки, представляющей собой окисел данного металла для Та, Nb, Мо, Zr — это Ta Os, NbiOs, М0О3, Zr O и т.д. Так, например, тантал без окисной пленки обнаруживает сильную анодность по отношению к большинству металлов в течение нескольких секунд после погружения пары в электролит, но образование на его поверхности окисла Таг Os под действием анодного тока быстро изменяет потенциал тантала на обратный и тантал становится катодом (рис. 48). Этот процесс аналогичен процессу пассивации алюминия, но протекает быстрее (рис. 49).  [c.56]

Параметры анодной поляризации начинают изменяться (раз-благораживание потенциалов активного растворения и перепасси-вации, облагораживание потенциала пассивации, рост плотности токов активного растворения и пассивации) уже при нагружении в упругой области (рис. 26, точка 1 диаграммы напряжение — деформация), однако максимальное изменение наблюдается в области пластического течения и с ростом деформационного упрочнения (причем, поскольку площадка текучести в данном случае почти не проявлялась, изменение величин было монотонным). Затухание роста деформационного упрочнения на стадии динамического возврата (см. рис. 26, точка 4) вызвало перемену знака дальнейшего изменения параметров поляризации, т. е. ослабление механо-химического эффекта.  [c.83]



Смотреть страницы где упоминается термин Химическая пассивация : [c.48]    [c.170]    [c.342]    [c.346]    [c.347]    [c.187]    [c.29]    [c.96]    [c.19]    [c.207]   
Ингибиторы коррозии (1977) -- [ c.0 ]



ПОИСК



Анодная пассивация химическая

Ланжелье химической пассивации

Особенности комплексонов как реагентов для химических очисток и пассивации сталей

Пассивация



© 2025 Mash-xxl.info Реклама на сайте