Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Соединение Причины хрупкого разрушения

При разработке методик испытания образцов особое внимание должно быть уделено выявлению склонности соединений к хрупким разрушениям, являющимся основной причиной снижения их эксплуатационной надежности. Лишь получение с помощью выбранных методов испытаний уверенных данных об этой характеристике позволяет рекомендовать их для оценки работоспособности сварных высокотемпературных конструкций. Все это требует, кроме применения классических методов испытаний, предназначенных в первую очередь для определения характеристик прочности материалов и сварных соединений, вводить и ряд новых методов, предназначенных специально для определения длительной пластичности и вероятности хрупких разрушений. Наиболее перспективным в этих случаях является использование методик, деформирование в которых осуществляется изгибом.  [c.108]


Анализ причин хрупких разрушений показывает, что трещины обычно начинаются от надрезов, являющихся концентраторами напряжений. Надрезом является любое нарушение непрерывности металла. К надрезам относятся дефекты сварных соединений (пористость, непровар, пустоты по сечению шва), поверхностные царапины, неметаллические включения, газовые раковины. В месте надреза пластическая деформация стеснена, что приводит к увеличению сопротивления пластической деформации, т, е. к росту Чем острее и глубже надрез, тем больше стеснена пластическая деформация, тем выше а . Под влиянием надрезов металл разрушается хрупко при более высокой температуре (табл. 13.3). Чувствительность к концентрации напряжений является важной характеристикой надежности материала, по которой более прочный металл чаще уступает менее прочному.  [c.604]

Разрушения при пайке. Как правило, паяные конструкции работают в эксплуатации вполне удовлетворительно и разрушения в них не бывает. Тем не менее, в некоторых случаях в соединениях образуются хрупкие разрушения — трещины. Следует подчеркнуть, что трещины в паяных соединениях образуются в результате несколько других причин, нежели при сварке. Образование объемного поля напряжений при пайке менее вероятно, форма паяных соединений в большинстве случаев более благоприятна, нежели при сварке со стороны образования концентраторов.  [c.137]

Анализ причин хрупких разрушений показал, что трещины хладноломкости обычно начинаются от надрезов, являющихся концентраторами напряжений. Надрезом является любое нарушение непрерывности металла, к надрезам относятся дефекты сварных соединений (пористость, непровары, пустоты по сечению шва), поверхностные царапины, неметаллические включения, газовые раковины. Надрезами могут быть технологические отверстия и резкие переходы сечений в детали. Надрезы создают в металле сложное напряженное состояние, стесненность пластической деформации и концентрацию напряжений (рис. 41). Сложное  [c.77]

В процессе эксплуатации аустенитных паропроводов на Черепетской и Челябинской станциях было обнаружено значительное количество трещин в околошовной зоне сварных стыков, несмотря на то, что выполненная предварительно тщательная оценка свойств сварных соединений по общепринятым методикам не выявила возможности хрупких разрушений сварных соединений в околошовной зоне. Только в результате проведения дополнительных обширных исследований были установлены основные причины снижения свойств околошовной зоны, созданы методики испытания (ЦКТИ, ИЭС и др.), позволившие оценивать  [c.210]


Анализ свойств сварных соединений из углеродистых и низколегированных сталей, выполненных сваркой плавлением, показал неоднородность структуры и свойств по зонам сварного соединения. В ЗТВ возникают нежелательные крупнозернистые структуры, высокие остаточные макро- и микронапряжения. Последствием структурных изменений является снижение механических и эксплуатационных свойств сварных соединений. Остаточные напряжения могут стать причинами возникновения трещин, снижают сопротивляемость хрупким разрушениям, способствуют ускорению коррозионных процессов по сравнению с основным металлом.  [c.6]

Процессы, происходящие в металле сварных соединений, могут приводить к хрупким разрушениям сварных конструкций. Опыт эксплуатации ответственных металлических конструкций показывает, что изготовление сварных узлов без трещин еще не устраняет опасности разрушения хрупких материалов при работе в условиях сложного напряженного состояния и низких температур. Причинами разрушений могут быть макроскопические концентраторы напряжений, различного вида несовершенства кристалличе-  [c.41]

В монографии рассмотрены основные положения теории жаропрочности сварных соединений и методы ее оценки в лабораторных условиях с помощью стендового и эксплуатационного опробований. Особое внимание уделено хрупким разрушениям при высоких температурах, являющимся основной причиной снижения работоспособности сварных узлов.  [c.2]

Предлагаемая книга, построенная на основе исследований, выполненных автором в ЦКТИ, а также данных отечественного и зарубежного опыта, посвящена комплексному рассмотрению проблемы жаропрочности сварных соединений. В ней изложены основные положения теории жаропрочности сварных соединений и методы ее оценки в лабораторных и стендовых условиях. Основное внимание уделено эксплуатации сварных соединений в стационарных установках, где условия работы наиболее сложны. С особой полнотой оценивается вероятность хрупких разрушений сварных конструкций при высоких температурах, являющихся основной причиной их преждевременного выхода из строя. Даны основные положения выбора материала для высокотемпературных сварных конструкций и изложены требования к их расчету.  [c.4]

При оценке работоспособности сварных соединений, работающих при высоких температурах, так же как и при комнатной, особое внимание должно быть уделено опасности их хрупких разрушений. Как показал опыт эксплуатации энергетических и других высокотемпературных сварных конструкций, именно проявление подобных разрушений является основной причиной снижения надежности изделий. В большинстве случаев они являлись неожиданными, так как по данным обычных испытаний, принятых  [c.69]

Основными причинами повреждения барабанов котлов являются высокие номинальные и местные (а = 2-3,5) циклические напряжения от запусков и остановов котлов накопление циклических повреждений от термических напряжений, связанных с пульсациями тепловых потоков и регулированием мощности повышенные остаточные напряжения в зонах приварки труб наличие исходных дефектов как в основном металле, так и в сварных соединениях накопление повреждений от коррозии и деформационного старения. Хрупкое разрушение барабанов паровых котлов может происходить в процессе гидро-испытаний при напряжениях Ниже предела текучести после заварки обнаруженных трещин. Для анализа прочности барабанов котлов в эксплуатации были осуществлены обширные исследования напряжений, деформаций и температур в программных и аварийных режимах, которые выявили условия образования местных упругопластических деформаций, превышающих предельные упругие в 1,5-2 раза. При испытаниях лабораторных образцов, вырезанных из серединных слоев поврежденных барабанов котлов было обнаружено незначительное (до 10%) уменьшение характеристик механических свойств предела текучести, предела прочности и относительного сужения. Было установлено, что наличие окисных пленок существенно (до 40%) снижает сопротивление циклическому разрушению.  [c.74]


Хрупкие разрушения — трещины — могут поразить сварные соединения аустенитных сталей и сплавов еще в процессе сварки. Но они могут появиться и после сварки — во время термической обработки или в процессе эксплуатации сварных соединений. Трещины наблюдаются в металле шва и в околошовной зоне. Несмотря на сходство металлографической картины трещин различного происхождения, причины и усилия, вызвавшие их появление в металле шва или околошовной зоне, могут быть самыми различными.  [c.164]

Наименее изучены причины образования термических околошовных трещин и физическая сущность локального разрушения сварных соединений аустенитных сталей в околошовной зоне. И тот и другой вид хрупкого разрушения, по-видимому, является следствием исчерпания запаса длительной прочности и пластичности металла в околошовной зоне. Об этом свидетельствует идентичность металлографической картины локального разрушения и разрушения по околошовной зоне сварных образцов, подвергшихся испытаниям на длительную прочность (рис. 66, б). Несколько иной вид имеют термические трещины — они могут располагаться на значительном расстоянии от шва (см. рис. 63, в). Но и такой характер разрушения может наблюдаться при испытаниях сварных образцов на жаропрочность.  [c.176]

Известно, что присутствие газов в металле шва вызывает снижение его физико-механических свойств. Влияние газов на снижение свойств металлов проявляется по-разному, в зависимости от рода их связи в металле и возможности выделения их при охлаждении и кристаллизации металла. Значительное содержание растворенных газов в металле является причиной возникновения пузырей, раковин, пор и уменьшения плотности металла, что приводит к снижению его пластичности и прочности. Наличие газов в виде химических соединений, таких как окислы, нитриды и гидриды, также может значительно уменьшить прочность и особенно вязкость металла и вызвать хрупкое разрушение конструкций. Это явление особенно резко сказывается при сварке активных металлов. Окисление металлов, кроме ухудшения механических свойств, понижает их стойкость против коррозии. Окисные включения также могут являться причиной появления газовой пористости, поскольку они сорбируют и удерживают газы в жидком металле.  [c.79]

Хрупкое разрушение деталей происходит при возникновении больших ударных нагрузок, при работе в условиях низких температур (низкотемпературное охрупчивание некоторых видов конструкционных сталей с примесью азота), больших остаточных напряжениях, например в сварных соединениях, наличии местных дефектов в материале, большой концентрации напряжений, действии факторов, не связанных с механическим напряжением (тепловое и радиационное охрупчивание). Хрупкое разрушение является причиной выхода из строя сварных соединений, чугунных отливок, фасонных деталей с объемной термообработкой до высокой твердости и т. д.  [c.32]

Сварка вызывает в изделиях появление напряжений, существующих без приложения внешних сил. Напряжения возникают по ряду причин, прежде всего из-за неравномерного распределения температуры при сварке, что затрудняет расширение и сжатие металла при его нагреве и остывании, так как нагретый участок со всех сторон окружен холодным металлом, размеры которого не изменяются. Вследствие структурных превращений участков металла околошовной зоны, нагретых в процессе сварки выше критических точек, в свариваемых конструкциях возникают структурные напряжения. В отличие от напряжений, действующих на конструкцию во время ее эксплуатации и вызываемых внешними силами, эти напрял ения называют внутренними (собственными) и остаточными сварочными напряжениями. Если значения сварочных напряжений достигнут предела текучести металла, они вызовут изменение размеров и формы, т. е. деформацию изделия. Деформации могут быть временными и остаточными. Если остаточные деформации достигнут заметной величины, они могут привести к неисправимому браку. Остаточные напряжения могут вызвать не только деформацию сварного изделия, но и его разрушение. Особенно сильно проявляется действие этих напряжений в условиях, способствующих хрупкому разрушению сварного соединения, которое происходит в результате неблагоприятного сочетания концентрации напряжений, температуры и остаточных напряжений. Первые два фактора меньше поддаются изменению, чем остаточные напряжения, поэтому применяют ряд мер по предотвращению и снижению сварочных напряжений и деформаций.  [c.97]

Процессы, происходящие в металле сварных соединений, могут привести к хрупким разрушениям сварных конструкций. Опыт эксплуатации ответственных металлических конструкций показывает, что изготовление сварных узлов без трещин еще не устраняет опасности разрушения хрупких материалов при работе в условиях сложного напряженного состояния и низких температур. Причинами разрушений могут быть конструктивные недостатки — наличие макроскопических концентраторов напряжений, дефекты сварных соединений — раковины, поры, шлаковые включения, подрезы по краю швов, а также различного вида несовершенства кристаллического строения металлов, микротрещины и полости, роль которых как концентраторов напряжений резко возрастает в условиях эксплуатации. В зависимости от материалов, применяемых в конструкциях, окружающей среды и вида нагружения исходные дефекты могут развиваться в трещины очень медленно или, наоборот, катастрофически быстро.  [c.84]


В соединениях легированных сталей наибольшую степень охрупчивания получают участки ОШЗ на расстоянии 0,1 мм от линии сплавления вследствие укрупнения зерна и образования твердых и малопластичных составляющих структуры в результате превращения аустенита (так называемое трансформационное охрупчивание). Одной из причин охрупчивания может быть сегрегация примесей на границах зерен, обусловливающая межкристаллитное (межзеренное) хрупкое разрушение. Эта причина является характерной для многослойных сварных соединений некоторых легированных сталей, подверженных отпускному охрупчиванию.  [c.154]

Хрупкие соединения являются причиной красноломкости тугоплавких металлов и сплавов. Твердые хрупкие соединения затрудняют межзеренное скольжение, непрерывность деформации вдоль границ зерен нарушается (вследствие снижения аккомодации за счет внутри-зеренной деформации) с последующим межзеренным разрушением.  [c.514]

Восстановительно-упрочняющие покрытия отличаются особыми свойствами. Наплавленные покрытия, например, имеют высокую твердость, неоднородны по строению и химическому составу, являются пористыми, а их наружная поверхность неровная. Ряд гальванических покрытий обладает высокой твердостью, и в них присутствуют гидроксиды, однако покрытия железнения, наоборот, мягкие и имеют значительную вязкость. Для многих газотермических покрытий характерны большая пористость и низкая прочность соединения с основой. Полимерные покрытия хрупкие, отличаются плохой теплопроводностью и низкой температурой плавления или начала разрушения. Эти причины объясняют назначение иных режимов обработки ремонтных заготовок, видов и геометрии инструмента, а также применяемых СОЖ.  [c.457]

В работе [385] изучались причины разрушения деталей космического корабля Апполон , изготовленных из титана и его сплавов с алюминием и оловом, при термическом и механическом циклировании в токе водорода. Во время испытаний водород проникал в титан и образовывал с ним хрупкие гидридные фазы. Взаимодействие водорода с титаном особенно интенсивным было в сварном шве и его окрестностях, где и начиналось разрушение детали. Применение аргона при сварке увеличивало почти втрое число циклов до разрушения. Механизм разрушения деталей из титановых сплавов в водороде авторам [385] выявить не удалось. Можно полагать, что образующиеся на поверхности детали хрупкие соединения титана с водородом отслаиваются под влиянием меняющихся температур и нагрузок, что создает условия для дальнейшего взаимодействия титана и водорода.  [c.166]

В нагруженных конструкциях опасны элементы, особенно протяженные, обладающие пониженными пластичностью и прочностью. Причиной пониженных пластичности и прочности паяных швов часто являются образующиеся в них прослойки хрупких интерметаллидов, расположенные вдоль границы с основным материалом. Характеристики прочности у таких паяных соединений, как правило, намного ниже, чем у припоя и чем у основного материала (табл. 10). Разрушение паяного соединения но прослойке интерметаллида при ударах, изгибе или растяжении указывает на ослабление ею паяного соединения. Паяный шов может разрушаться по прослойке интерметаллида также при охлаждении после пайки в результате малой пластичности, слабой связи такой прослойки с основным материалом  [c.49]

Одной из основных причин снижения эксплуатационной надежности разнородных сварных соединений является хрупкое разрушение в зоне сплавления. Для предупреждения этого явления рекомендуется применять сварочные материалы с повышенным запасом аустенитности, лучше всего электроды на никелевой основе. Образование и развитие в зоне сплавления переходных прослоек, появляюш,ихся в результате диффузии углерода из малолегированного основного металла в аустенитный шов при сварке, термообработке и эксплуатации конструкции в условиях высоких температур, также может способствовать снижению прочности разнородных соединений. Переходные прослойки в виде обезуглероженной зоны крупных зерен феррита со стороны малолегированного металла и высокотвердой прослойки со стороны аустенитного шва образуются, начиная с температуры 420— 450° С и наибольшей толщины достигают во время выдержки при температуре 800—850° С.  [c.151]

Одна из причин пониженной свариваемости перлитной и аустенитной сталей - образование хрупкого мартенситного слоя или карбидной гряды в объеме переходной кристаллизационной прослойки, у которой уровень легирования металла снижается, приближаясь к перлитной стали. Образование этой прослойки объясняется ухудшением перемешивания жидкого металла в пристеночных слоях. При небольшом запасе ау-стенитности металла шва толщина этой прослойки может достигнуть критической величины, при которой происходит хрупкое разрушение сварного соединения.  [c.393]

Участок межкритического интервала зоны термического влияния может явиться также местом преждевременных хрупких разрушений сварных соединений ма.тоуглеродистых и низколегированных молибденовых сталей вследствие протекания при высокотемпературной эксплуатации процесса графитизации. Причиной его развития является нестабильность структур межкритического интервала при высоких температурах и распад в этих условиях цементита с выделением свободного углерода в виде графита. Графитизация явилась причиной разрушения паропровода из 0,5-процентной молибденовой стали после 5,5 лет его работы при температуре 480" С. Характерной особенностью поверхности излома является точное его расположение по участку межкритического интервала с повторением очертания сварочных валиков. На этом участке шириной 0,3—0,4 мм обнаруживается интенсивная графитизация с расположением графита в виде цепочек по границам зерен. Следы графитизации были обнаружены также в сварных соединениях ряда других паросиловых установок и в крекинг-аппаратах.  [c.80]

Материалами предыдущей главы, казалось бы можно и завершить монографию по сварке аустенитных жаропрочных сталей. На самом деле, уже рассмотрены многие важные вопросы металлургии, металловедения и технологии сварки этих сталей. Уделено особое внимание причинам образования различного рода дефектов в аустенитных швах. Описаны многие средства борьбы с этими дефектами. Подчеркивается, что главнейшей задачей, возникаюш,ей при сварке аустенитных сталей и сплавов, является разработка эффективных мер борьбы с горячими треш,инами в металле шва, наплавленном металле и в околошовной зоне. Для аустенитных сталей и сплавов с особо высоким содержанием легирующих элементов (до 50—60% Сг, до 3—6% А1 и до 3—6% Ti, до 20—25% Мо, до 20—25% W, до 3% Вит. д.), а также для дисперсионно-твер-деющих сверхпрочных аустенитных сталей и сплавов большую важность приобретает проблема борьбы не только с горячими, но и холодными трещинами в швах, наплавленном металле, околошовной зоне и основном металле. Не столь общей, но очень важной для многих жаропрочных сталей и сплавов является проблема хрупких разрушений сварных соединений в процессе эксплуатации, а иногда еще во время термической обработки.  [c.361]

Сварные узлы, выполненные без трещин, могут подвергаться хрупкому разрушению при работе конструкции в условиях сложного напряженного состояния и низких температур. Причинами разрушений могут быть конструктивные недостатки — наличие макроскопических концентраторов напряжений и дефекты сварных соединений — раковины, поры, шлаковые включения, подрезы по краю швов, существенное изменение структуры металла в результате сварочного тепла и возникновения остаточных напряжений. Склонность материалов к хрупкому разрушению оценивают путем испытаний различных видов.  [c.50]


В процессе гальванического покрытия кадмием, цинком и другими металлами происходит наводороживание поверхностных слоев, которое приводит далее к замедленному хрупкому разрушению болтов из высокопрочных сталей (Ств > 110 кгс/мм ). Для предотвращения разрушений резьбовых соединений следует производить раз-водороживание. Повторные гальванические покрытия высокопрочных болтов нежелательны по этой же причине.  [c.37]

Причиной аварии крана явилось разрушение угловых сварных швов ходовых тележек крана вследствие некачественного выполнения сварных соединений, что привело к существенному несплавлению с кромкой и непроварам угловых швов, несоответствию высоты катетов сварных швов нормативной документации и нерациональному конструкторскому решению узла проушины ходовой тележки шарнирного соединения со стяжкой, в частности применению угловых швов в качестве силовых, работающих на отрыв. Хрупкому разрушению сварных швов ходовых тележек предшествовало накопление трещинообразных дефектов в процессе эксплуатации.  [c.58]

Экспериментальные исследования и анализ хрупких разрушений элементов конструкций показывают, что критическая температура хрупкости для них обычно бывает выше, чем получается на основании результатов определения ударной вязкости надрезанных образцов из используемого материала. Причиной этого является, с одной стороны, то, что характеристики материала реальной конструкции больших размеров с большой толщиной стенок отличаются от характеристик материала термически обработанных образцов малых размеров. С другой стороны, очагом разрушения конструкции обычно является сварное соединение, причем неоднородность материала в зоне соединения, высокий уровень остаточных напряжений и наличие дефектов сварки обычно вызывают повьинение критической температуры хрупкости. В связи с этим более высокая рабочая температура конструкции по сравнению с критической температурой хрупкости, определенной по данным испытаний ударной вязкости надрезанных образцов, еще не гарантирует от возмож1юсти хрупкого разрушения  [c.289]

Образование закаленных участков в сочетании о наводоро-живанием при сварке и высоким уровнем остаточных сварочных напряжений может привести к образованию холодных трещин при СБзрке сталей такого типа. Поскольку увеличение погонной энергии может явиться причиной снижения сопротивления сварных соединений хрупкому разрушению, общепринятая технология основана на применении сварки с ограничением погонной энергии. При толщине свариваемого проката более 50 мм эффективно применение автоматической сварки под флюсом либо в защитном газе в узкий зазор. Повышение производительности сварочного процесса при удовлетворении предъявляемым требованиям по механическим и служебным свойствам достигается использованием технологии, основанной на регулировании термических циклов как при автоматической сварке под флюсом (прн толщине проката до 30 мм), так и при электрошлаковой сварке (при толщине проката более 30 мм) [73].  [c.195]

Одна из основных трудностей при сварке аустенитных сталей с перлитными обусловлена образованием хрупких кристаллизационных прослоек со стороны перлитных сталей, как правило, со структурой мартенсита. Резко отличаясь своими свойствами от свариваемых сталей, эти прослойки могут оказаться причиной образования трещин в сварных швах и в сварных соединениях, а также причиной преждевременного разрушения конструкции. Как правило, такие прослойки возникают при использовании для сварки электродов, обеспечивающих низкий запас аустенитности металла сварного шва (электроды типа ЭА-1). Для сведения к минимуму количества таких прослоек необходимо использовать электроды с ббльшим запасом аустенитности (ЭА-2, ЭА-2Г6, ЭА-ЗМ6 и др.). При этом кристаллизационные прослойки, если и имеют место, то весьма огра-  [c.473]

Из выражения (4.1) следует, что с уменьшением размера зерна возрастает величина критических напряжений разрушения. Эта зависимость получена для случая однородной микроструктуры аустепитпых сталей и применительно к сварным швам, характеризующимся неоднородной структурой, она не вполне приемлема. Наиболее характерным признаком структуры шва является наличие участков доэвтектоидного феррита но границам зерен. Известно, что феррит - мягкая структурная составляющая, в то время как бейнитный пакет - высокопрочная. Поэтому из-за пеодпородпости (по прочностным характеристикам) структурных составляющих шва на их границах будут существовать локальные области с повышенной концентрацией папряжепий, которые могут быть причиной преждевременного хрупкого разрушения сварного соединения.  [c.121]

В 1974 г. произошло разрушение трубопровода 0114 мм обвязки одной из скважин УКПГ-б ОНГКМ. В области фланца образовалась сквозная трещина, находившаяся на расстоянии 15-23 мм от оси сварного шва. Структура металла фланца в зоне образования и развития трещины состояла из грубопластинчатого перлита. Методами электронной фрактографии установлено, что металл фланца был сильно загрязнен неметаллическими включениями, по которым распространялось разрушение, имевшее преимущественно хрупкий характер. Причиной возникновения этого повреждения явилось наличие в металле фланца большого количества неметаллических включений типа оксисульфидов и непроваров глубиной до 2 мм общей протяженностью около 50 мм в корне сварного шва. Кроме того, отсутствие термообработки сварного соединения способствовало возникновению в околошовной зоне структуры троостита, не обладающей достаточной стойкостью к сероводородному растрескиванию, и высокого уровня остаточных напряжений.  [c.27]

Элементы (5е, 8, О, Те и др.), образующие с медью хрупкие химические соединения (например, СигО, СпгЗ). Увеличение содержания серы в меди, с одной стороны, обеспечивает повышение качества ее механической обработки (резанием), с другой стороны, вызьшает хладноломкость меди. Присутствие кислорода в меди является причиной ее < одородной болезни , проявляющейся в образовании микротрещин и разрушении при отжиге (/ > 400 °С) в водородсодержащей среде. В данном случае водород, активно диффундирующий в металл, отнимает кислород у закиси меди СигО с образованием паров воды. В металле возникают области с высоким давлением, вызывающим разрушение материала.  [c.199]

Согласно проведенным исследованиям, увеличение доли меж-зеренной составляющей в изломе сопровождается смещением критических температур хрупкости в область положительных температур, т. е. охрупчиванием металла. Наиболее слабым звеном металлоконструкции, как правило, являются сварные швы, поэтому электронно-фрактографические исследования проводят обычно в целях определения степени охрупчивания (повреждения) металла различных зон сварного соединения и установления причин его трещинообразования. Изломы для электронно-фрактографическо-го анализа получают при испытании стандартных образцов на ударную вязкость (ГОСТ 9454-78) при отрицательных температурах, обеспечивающих наличие на поверхности разрушения хрупкого квадрата .  [c.192]


Смотреть страницы где упоминается термин Соединение Причины хрупкого разрушения : [c.21]    [c.170]    [c.547]    [c.83]    [c.407]    [c.45]    [c.70]    [c.387]    [c.191]    [c.249]    [c.417]    [c.80]   
Справочник металлиста Том2 Изд3 (1976) -- [ c.50 ]



ПОИСК



Причинность

Разрушение хрупкое

Разрушения причины

Соединения Причины хрупкого разрушени

Соединения Причины хрупкого разрушени



© 2025 Mash-xxl.info Реклама на сайте