Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление крыловых профилей

В этих равенствах обозначает сопротивление крылового профиля в действительном движении, т. е. искомое профильное сопротивление, Ri — сопротивление давлений части боковой поверхности полутела, отсеченной плоскостью 02, Хр— одинаковую для обоих потоков проекцию на ось Ох главного вектора сил давлений, приложенных (как показано на рис. 247  [c.620]

Изложенные в предыдущих параграфах упрощенные методы расчета турбулентного пограничного слоя позволяют с достаточной для практики точностью рассчитать отнесенное к единице длины вдоль размаха сопротивление цилиндрического крыла при плоском его обтекании безграничным потоком. Эго сопротивление крылового профиля называют профильным сопротивлением.  [c.638]


Фиг. 190. Зависимость коэффициента профильного сопротивления крылового профиля от числа Фиг. 190. Зависимость <a href="/info/20105">коэффициента профильного сопротивления</a> крылового профиля от числа
Из условия перпендикулярности главного вектора сил давления к вектору скорости набегающего потока следует, что в случае плоского потока идеальной жидкости составляющая главного вектора по направлению вектора скорости набегающего потока — сила сопротивления движению крылового профиля— независимо от его формы равна нулю. Это утверждение представляет собой частный случай более общего парадокса Даламбера.  [c.249]

НОЙ частью профильного сопротивления, а его коэффициент можно выразить через число кавитации. Рассмотрим схему супер-кавитационного обтекания крылового профиля (рис. 10.11).  [c.404]

При числах Re, меньших критического, характеристики решетки заметно изменяются. Прежде всего, как и у изолированных крыловых профилей, возрастает коэффициент сопротивления при данном угле атаки, что приводит к значительному снижению качества решетки. Кроме того, снижение Re приводит к уменьшению угла поворота потока Лр (при неизменном угле атаки), т. е. к увеличе-  [c.90]

Характеристики сил, действующих на крыло, определяются обычно испытаниями в аэродинамических трубах. Геометрические параметры крылового профиля даны на рис, 15-16. Углом атаки называют угол между линией хорды и направлением свободного потока. Экспериментальные данные, полученные при исследовании двумерного обтекания некоторого дозвукового крылового профиля, приведены на рис. 15-17 [Л. 16], где даны зависимости от угла атаки коэффициентов Свс и С А, отношения подъемной силы к силе лобового сопротивления и положения центра давления. Оптимальное отношение подъемной силы к силе сопротивления для этого крыла имеет место при угле атаки около 1,5°, а подъемная сила увеличивается линейно  [c.413]

Иногда в число условий единственности входят некоторые интегральные равенства, подобно тому, как это имело место в идеальной жидкости, где при расчете подъемной силы крылового профиля (гл. V) использовалась присоединенная циркуляция. В динамике вязкой жидкости аналогичную роль играют задание величины импульса струи при расчете явления распространения струи в пространстве, затопленном той же жидкостью, задание сопротивления тела для определения течения в аэродинамическом следе за ним и др.  [c.365]


Как показывают опыты, сопротивление давлений хорошо обтекаемого крылового профиля при наличии на его поверхности полностью ламинарного или полностью турбулентного пограничного слоя убывает с ростом рейнольдсова числа, что и естественно, так как при возрастании рейнольдсова числа толщина пограничного слоя уменьшается и внешний поток приближается к безвихревому обтеканию профиля идеальной жидкостью.  [c.616]

По сравнению с единичным крыловым профилем задача о расчете профильного сопротивления решетки усложняется тем, что пограничные слои, сходящие с отдельных профилей в решетке, на некотором расстоянии вниз по потоку смыкаются (рис. 248), образуя движение, не подчиняющееся уравнениям пограничного слоя. Обозначим это сечение индексом 2 без знака оо и предположим, что неоднородность поля скоростей в этом сечении следа за решеткой мала. Тогда легко показать ), что потеря напора может быть выражена формулой  [c.625]

В точной теории сопротивления тел, движущихся со сверхзвуковой скоростью, сопротивление, соответствующее следу от ударной волны, не всегда может быть легко отделено от волнового сопротивления. Рассмотрим, например, крыловой профиль в плоско-параллельном потоке и предположим, что на острой передней кромке имеется присоединенная ударная волна. Легко видеть, что линии Маха, выходящие из поверхности профиля, пересекают ударную волну. Линии Маха, выходящие из поверхности профиля, представляют собой волны расширения, указанные ранее при рассмотрении потока сжимаемой жид кости, обтекающего угол. Такие волны иногда называют волнами Прандтля-Мейера этими авторами был впервые дан математический анализ процесса расширения. Так как волны расширения пересекают ударную волну сжатия, то они уменьшают ее интенсивность и могут также создать бесконечно малые волны сжатия, отра-  [c.56]

Приближенные формулы профильного сопротивления крыла и крылового профиля в решетке  [c.645]

Крыловой профиль обладает оптимальными аэродинамическими характеристиками высокой подъемной силой и малым сопротивлением, если поток присоединен к его поверхности (фиг. 10). Однако, если профиль установлен под достаточно большим углом атаки, поток над верхней поверхностью профиля отрывается (фиг. 11), и течение над этой поверхностью сильно отличается от оптимального. Кроме того, на значительной части области отрыва образуются вихри. Такой вид отрыва на крыловом профиле, нежелательный для инженерных приложений, называется срывом потока.  [c.21]

Если отрыв потока нежелателен в инженерных приложениях, его условились называть срывом . Напомним, что срывом на крыловом профиле называют отрыв потока, ухудшающий характеристики профиля вследствие резкого возрастания сопротивления и падения подъемной силы. Однако на практике отрыв потока не всегда нежелателен. Например, благодаря взаимодействию отрывного течения, создаваемого иглой, установленной перед тупым телом, при сверхзвуковых скоростях полета с отошедшим головным скачком уплотнения лобовое сопротивление сильно уменьшается. Следовательно, необходимо новое определение понятия срыва как явления в течении, которое приводит к накоплению значительных количеств заторможенной жидкости и часто связано с появлением нестационарности [35]. Нестационарность возникает из-за периодических выплескиваний накопившейся застойной жидкости, а так как возможность вытекания исключена, накопление жидкости продолжается. В трехмерном течении существует компонента скорости, перпендикулярная направлению основного потока. Накопленная жидкость может выплескиваться в этом направлении. Поэтому в несимметричном течении, т. е. в трехмерном течении, срывы встречаются редко. Однако в строго двумерном течении вытекание по нормали к направлению основного потока исключено и возможно накопление значительного количества заторможенной жидкости с периодическим выплескиванием другими словами, возникает срыв. На практике двумерные течения встречаются весьма редко и чаще всего наблюдается осесимметричное течение. В противоположность строгому определению отрыва потока определение срыва следует считать довольно субъективным, так как его существование связано с геометрией поля течения и характеристиками жидкости.  [c.46]


Отрыв потока с передней кромки может оказать влияние на весь режим обтекания поверхности. Как и в других случаях отрыва потока, вязкий поток отрывается на передней кромке под действием положительного градиента давления. При достаточно больших углах атаки крылового профиля положительный градиент давления на передней кромке с малым радиусом закругления оказывается достаточно большим, чтобы вызвать отрыв. При больших числах Маха отрыв потока с передней кромки зависит от интенсивности скачка уплотнения, образующегося около передней кромки. Даже при малых углах атаки тонкого крыла с большой стреловидностью и с заостренной передней кромкой поток отрывается от передней кромки с образованием вихрей над верхней поверхностью крыла, оказывая влияние на аэродинамические характеристики, в особенности в условиях взлета и посадки, а также под действием порывов ветра и взрывных волн в атмосфере. Другим интересным явлением считается отрыв потока с острия иглы, установленной перед тупой носовой частью тела при сверхзвуковых скоростях. Такая игла может способствовать уменьшению сопротивления и теплопередачи к летательным аппаратам, развивающим большие скорости ). Она может быть также использована как эффективное средство управления.  [c.200]

Отсос пограничного слоя является также очень полезным средством улучшения характеристик сверхзвукового крыла. Опыты Грота [53] с двояковыпуклым крыловым профилем толщиной 5% при числе Рейнольдса, вычисленном по длине хорды, 12,5-Ю , и числах Маха 2,23 и 2,77 показали, что можно получить увеличение подъемной силы при малом сопротивлении.  [c.219]

Таким образом, подытоживая все сказанное, мы можем утверждать, что причиной малой величины лобового сопротивления тонких тел и возникновения подъемной силы крыловых профилей является, как правило, турбулентная форма течения в пограничном слое.  [c.51]

Рассматривая обтекание плоской пластинки как первое приближение к обтеканию крылового профиля, приходим к выводу, что с целью уменьшения сопротивления трения профиля выгодно иметь на нем возможно больший участок ламинарного пограничного слоя Иными словами, выгодно точку Л перехода ламинарного пограничного слоя в турбулентный максимально отодвинуть назад по потоку.  [c.260]

Фиг. 12. Влияние генераторов вихрей (крылышек н клиньев) на подъемную сплу и сопротивление крылового профиля NA A 63,,-018 [25]. Фиг. 12. Влияние <a href="/info/203904">генераторов вихрей</a> (крылышек н клиньев) на подъемную сплу и сопротивление крылового профиля NA A 63,,-018 [25].
Рис. 14.19. Уменьшение лобового сопротивления крылового профиля, достигаемое ламинаризацией пограничного слоя посредством отсасывания через большое число щелей. По В. Пфеннингеру [ ]. Мощность, затрачиваемая на отсасывание, включена в коэффициент сопротивления, а) Зависимость оптимального коэффициента сопротивления от числа Рейнольдса Ре кривые (7), (2), (3) — без отсасывания - рривая (1) — плоская пластина, ламинарное течение кривая (2) — плоская пластина, переход ламинарной формы течения в турбулентную кривая (3) — плоская пластина, полностью турбулентное течение, б) Поляры сопротивления при двух различных числах Рейнольдса. Самые малые коэффициенты сопротивления имеют место в весьма широкой области коэффициентов подъем- Рис. 14.19. Уменьшение <a href="/info/18721">лобового сопротивления</a> крылового профиля, достигаемое ламинаризацией <a href="/info/510">пограничного слоя</a> посредством отсасывания через большое число щелей. По В. Пфеннингеру [ ]. Мощность, затрачиваемая на отсасывание, включена в <a href="/info/5348">коэффициент сопротивления</a>, а) Зависимость оптимального <a href="/info/5348">коэффициента сопротивления</a> от <a href="/info/689">числа Рейнольдса</a> Ре кривые (7), (2), (3) — без отсасывания - рривая (1) — <a href="/info/204179">плоская пластина</a>, <a href="/info/639">ламинарное течение</a> кривая (2) — <a href="/info/204179">плоская пластина</a>, переход ламинарной формы течения в турбулентную кривая (3) — <a href="/info/204179">плоская пластина</a>, полностью <a href="/info/2643">турбулентное течение</a>, б) Поляры сопротивления при двух различных <a href="/info/689">числах Рейнольдса</a>. Самые малые <a href="/info/5348">коэффициенты сопротивления</a> имеют место в весьма широкой области коэффициентов подъем-
Рис 25.3. Зависимость коэффициента профильного сопротивления крыловых профилей при несжимаемом течении от числа Рейнольдса. По расчетам Сквайра и Янга [ ]. зсдер — положение точки перехода  [c.684]

В этих равенствах Rx обозначает сопротивление крылового профиля в действительном движении, т. е. искомое профильное сопротивление. Rix — сопротивление давленнГ части боковой поверхности полутела, отсеченной нлос1 остью 02, X , — одинаковую для обоих потоков проекцию на ось Ох главного вектора сил давлений, приложенных (как показано иа рис. 268 стрелками) к боковой поверхности выделенного объема трубки, Но — продольную скорость в 110теициальн0м потоке в сечении аг, а O2— толщину вытеснения в том же сечении.  [c.777]

Одним ИЗ важнейших факторов, влияющих на величину Квнр, а значит, и на положение точки перехода, является градиент давления. Как известно, при обтекании тел он может быть как положительным, так и отрицательным. В области отрицательных градиентов, т. е. в области ускоряющегося или конфузорного течения, пограничный слой чаще всего остается ламинарным, тогда как в области положительных градиентов (или диффузорного течения) обычно происходит переход к турбулентному режиму. При этом точка перехода располагается ниже точки минимума давлений, поэтому в первом приближении положение точки перехода на удобообтекаемых телах при отсутствии отрывов пограничного слоя можно определять по положению точки минимума давлений. Поскольку последнее зависит от формы профиля тела, можно в определенных пределах управлять положением точки перехода, изменяя надлежащим образом форму профиля. Это используется для снижения сопротивления трения тонких крыловых профилей. Дело в том, что трение, определяемое касательными напряжениями, в ламинарном слое гораздо меньше, чем в турбулентном. Выполняя профиль таким, чтобы его сечение с наибольшей толщиной, при-  [c.362]


Экспериментальное значение коэффициента сопротивления пластины, поставленной нормально к потоку, может достигать значений G = 2. Следует, однако, иметь в виду, что структура течения в ближнем следе, а значит, и давление на тыльной стороне обтекаемого тела существенно зависят от числа Рейнольдса. По рис. 10.2 можно проследить характер изменения структуры потока за сферой при изменении Re от 9,15 до 133, а по рис. 10.7 — за цилиндром при Re == 0,25. .. 57,7. Но возможны и другие конфигурации потока. Они в значительной степени определяются также формой и положением обтекаемого тела. Так, например, при обтекании цилиндрических тел крылового профиля при малом угле атаки (см. рис. 8.30, а) возможно практически безотрывное течение, при котором форма линий тока для вязкой жидкости близка к форме этих линий для идеальной жидкости. Но при возрастании угла атаки увеличиваются положительные градиенты давлений на выпуклой части поверхности профиля и это в итоге приводит и отрыву пограничного слоя, который быстро сверты-  [c.391]

Таким образом, цилиндр крылового профиля в зависимости от его положения в потоке может быть удобо- или неудобообтекаемым телом. В первом случае его сопротивление давления мало и сила лобового сопротивления почти полностью определяется вторым слагаемым в формуле (10.4), т. е. сопротивлением трения. Во втором случае, наоборот, сопротивление давления велико, а трение в большинстве случаев пренебрежимо мало. Применяя уравнение количества движения, можно показать, что сопротивление давлен ния тем меньше, чем меньше ширина гидродинамического следа (вихревой зоны за телом). Поэтому удобообтекаемыми могут быть только такие тела, которые имеют заостренную или тонкую заднюю кромку. Для них при безотрывном обтекании теоретическая ширина следа равна нулю.  [c.393]

Если dpldx[c.261]

Судя по характеру кривых рис. 210, можно думать, что в точке перехода Т происходит местный, не получающий дальнейшего развития отрыв ламинарного слоя, сопровождающийся обратным прилипанием уже турбулентного пограничного слоя к поверхности шара. Такой турбулентный пузырь (английский термин ЬпЬПе) отрыва в развитом своем виде уже давно наблюдался на лобовых участках крыловых профилей. Появление его и исчезновение приводило к загадочным изменениям подъемной силы и сопротивлений крыльев на больших углах атаки, к гистерезису коэффициента подъемной силы при начальном возрастании и последующем убывании угла атаки и др. Одно из первых описаний этого явления можно найти в сборнике монографий, вышедшем под редакцией С. Голдстейна  [c.541]

В опытовых судостроительных бассейнах применяли такого рода турбулизаторы, чтобы их эффектом заменить недоступное для бассейна увеличение рейнольд-сова числа и тем самым приблизить лабораторные условия к натурным. Не всегда, конечно, увеличение степени турбулентности потока приводит к тому же изменению сопротивления или подъемной силы, что и увеличение рейнольдсова числа ). Это особенно относится к крыловым профилям, вблизи лобовой точки которых развиваются явления кризиса, подобные тем, которые имеют место на поверхности круглого цилиндра.  [c.542]

Как видно нз графика, смещение назад места максимальной толщины симметричного профиля приводит при нулевом угле атаки к более плавному распределению давлений по поверхности профиля, чем у симметричного профиля Жуковского (на рис. 98 — пунктир) той же относительной толщины. В дальнейшем будет показано, что при прочих равных условиях, в частности, при том же коэффициенте подъемной силы, плавность распределения является положительным признаком крылового профиля с точки зрения его сопротивления и поведения при больших скоростях. Далее из графиков видно, как меняется распределение давления при всзрастанни угла атаки, как возникает пик разрежения на верхней поверхности и насколько он быстро разви-  [c.317]

На рис. 198 правая пунктирная переходная кривая относится к случаю сравнительно большой протяженности ламинарного участка в носовой части пластины, левая — к случаю малого ламинарного участка. Из рассмотрения переходных кривых вновь вытекает, что чем больше, при одном и том же рейнольдсовом числе, относительная длина ламинарного участка, тем коэффициент сопротивления меньше. Отсюда следует уже высказанное ранее положение о выгодности тщательной полировки лобовой части пластины или крылового профиля с целью затягивания ламинарного режима течения в пограничном слое. Что такое затягивание практически возможно, следует из указанных в 91 численных значений Квкр (от 3100 до 9300). Крылья с затянутым ламинарным пограничным слоем называют ламинизирован-ными. 1  [c.629]

Изложенный упрощенный прием расчета пограничного слоя пригоден лищь для режимов обтекания крыловых профилей, не связанных с отрывом турбулентного слоя. Этот прием может с успехом применяться, например, для расчета сопротивления крыла самолета на режиме максимальной скорости, но совершенно не пригоден для расчета посадочных режимов. Этот же прием полезен для расчета сопротивления решетки профилей, имитирующей рабочее колесо турбины, но не достаточен для аналогичного расчета компрессорной решетки, отдельные профили которой работают обычно на режимах, близких к отрывным.  [c.634]

Еслн встать па точку зрения указанных выше аналогий между ламинарным и турбулентным слоями, то легко заключить об отрицательном влиянии числа М (сжимаемости газа) потока на обтекаемость крылового профиля. Подобно тому, как это имело место в случае ламинарного слоя (вспомнить сказанное в конце 91), увеличение числа М, приводящее к обострению пиков разрежений (увеличению отрицательных значений i/ ), должно, согласно (79). вызвать отрыв, расположенный ближе к лобовой точке разветвления потока, чем при М = 0. Это объясняет, почему, наряду с явлением затягивания. кризиса обтекания на ббльшие R, с ростом М возрастают также и докрити-ческие величины коэффициента сопротивления шара (рис. 185). Аналогичное объяснение можно дать наблюдаемому на многих крыловых профилях явлению убывания максимального коэффициента подъемной силы с ростом влияния сжимаемости (числа М).  [c.637]

Как показывают опыты, сопротивление давлений хорошо обтекаемого крылового профиля убывает с ростом рейнольдсова числа, что и естественно, так как при возрастании рейнольдсова числа голгцина пограничного слоя уменьшается и внешний поток приближается к безвихревому обтеканию профиля идеальной жидкостью.  [c.641]

Фор.чула (90) лежит в основе практических расчетов профильного сопротивления крылоев и дает хорошее совпадение с опытными материалами. Были составлены специальные номограммы (сетки), по которым, задаваясь геометрическими параметрами крылового профиля и положением точки перехода, можно легко определить коэффициенты профильного сопротивления крыла при данном рейнольдсовом числе набегающего на него потока. Эти сетки, состав.тенные сперва для случая обтекания профилей несжимаемой жидкостью (М = 0), были в дальнейшем обобщены и для различных значений чисел М. Соответствующие данные можно найти в специальных справочниках и курсах аэродинамического расчета.  [c.651]


Если местные значения Сь во всех сечениях между центральной частью и концом крыла одинаковы, то одинаковы и распределения давления и нагрузки по хорде. Хотя распределение кривизны или крутки удовлетворяет заданным требованиям только при одном значении Сь, модификация формы в плане теоретически эффективна для всех значений Сь- Так как отрыв может произойти на всем крыле одновременно, если только форма центрального сечения крыла не изменена, чтобы обеспечить меньший пик разрежения, отрыв нельзя задержать. Соответствующие модификации формы других сечений по размаху привели бы к дальнейшим изменениям в распределении кривизны и крутки, так как свойства заданной средней линии профилей изменяются вдоль размаха стреловидного крыла [15]. С учетом поведения пограничного слоя оптимальную форму будет иметь крыловой профиль с увеличенным участком хорды, на котором градиент давления отрицателен, и уменьшенным участком хорды, на котором градиент давления положителен. Путем увеличения радиуса скругления передней кромки можно получить большой благоприятный градиент давления на первых нескольких процентах хорды профиля и избежать отрыва, максимально сократив участок с положительным градиентом давления, на котором напряжение трения равно нулю или близко к нулевому значению можно избежать также перехода и получить наиболее эффективный профиль для заданных условий [181. Вортман снизил сопротивление на 20% но сравнению с существующими профилями с малым сопротивлением [19].  [c.203]

Перейдем к ламинарному пограничному слою. Будем называть высоту элемента шероховатости, вызывающего в ламинарном пограничном слое переход ламинарной формы течения в турбулентную, критической высотой шероховатости (см. 7 главы XVII). Наличие шероховатости с критической высотой меняет величину сопротивления вследствие того, что точка перехода перемещается вперед, т. е. вверх по течению. При этом в зависимости от формы тела сопротивление может либо увеличиться, либо уменьшиться. Увеличение сопротивления происходит в том случае, когда для рассматриваемого тела преобладает сопротивление трения (примером может служить крыловой профиль) уменьшение же сопротивления наблюдается иногда у тел с преобладающим сопротивлением дав ления (например, у круглого цилиндра). Согласно японским измерениям, выполненным для изолированных шероховатостей критическая высота шероховатости для ламинарного пограничного слоя определяется формулой  [c.597]

Метод определения профильного сопротивления, предложенный Б. М. Джонсом, нашел широкое применение как при измерениях в полете, так и при измерениях в аэродинамических трубах [ ], [ ], [ ], [ ], [ ], [26], [39] [40] [46] [47] всех случаях получаются весьма удовлетворительные результаты. Г. Дёч [ ] показал, что при измерениях позади крылового профиля формулы Бетца и Джонса можно применять на расстояниях от задней кромки крыла, составляющих всего только 5% хорды крыла. В этом случае дополнительный член в формуле Бетца составляет по своей величине около 30% от величины первого члена. Особенно пригоден экспериментальный метод определения профильного сопротивления для установления влияния шероховатости обтекаемой поверхности на профильное сопротивление, а также для определения очень малого сопротивления ламинаризованных профилей.  [c.680]

Определение профильного сопротивления путем расчета, поясненное в предыдущем параграфе для отдельного крылового профиля, распространено Г. Шлихтингом и Н. Шольцем [30], [34] случай течения через крыловые или лопаточные решетки. Если в турбине или в компрессоре с осевым протеканием через направляющее и рабочее колёса провести цилиндрическое сечение с осью, совпадающей с осями обоих колес, и затем развернуть это сечение в плоскость, то в последней получится так называемая плоская решетка из отдельных профилей крыльев или лопаток. Параметрами этой решетки являются относительный шаг ///, т. е. отношение шага 1 решетки к хорде профиля, и угол установки Руст профиля (рис. 25.7). При потенциальном обтекании отдельного крыла давление далеко впереди и далеко позади крыла одинаково. При потенциальном же течении через решетку такое равенство давлений в общем случае нарушается, а именно позади решетки возникает понижение давления, если решетка преобразует давление в скорость (турбинная решетка), и, наоборот, возникает повышение давления, если решетка преобразует скорость в давление (насосная, или компрессорная, решетка). Совокупное действие такого понижения (или повышения)  [c.686]


Смотреть страницы где упоминается термин Сопротивление крыловых профилей : [c.732]    [c.646]    [c.331]    [c.398]    [c.621]    [c.631]    [c.11]    [c.61]    [c.369]    [c.367]    [c.379]    [c.651]   
Механика жидкости (1971) -- [ c.402 , c.403 , c.413 , c.414 , c.417 , c.418 , c.427 ]



ПОИСК



Крылов

Профиль крыла

Профиль крыловой

Сопротивление крыла

Сопротивление профиля



© 2025 Mash-xxl.info Реклама на сайте