Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение теории вязко-упругого течения

Остановимся вкратце на случае, когда среда несжимаема (о = 0,5). Будем рассматривать этот вопрос только с позиций интегральных уравнений. Дело здесь усложняется тем, что значение а = 0,5 является вырожденным для дифференциальных уравнений. Интегральные уравнения теории упругости для несжимаемой среды совпадают (с точностью до физического смысла) с уравнениями линеаризованного течения вязкой жидкости [230]. Эти уравнения являются регулярными, и в дополнение к полюсу резольвенты в точке к = —1 возникает еще полюс в точке Я. = 1. Это обстоятельство очевидно, поскольку для несжимаемой среды постановка задачи 1+ возможна лишь при условии  [c.565]


Мы считали, что объемные силы отсутствуют. Возможно, будет поучительным заметить, что варьированное распределение смещений (или скоростей), которое мы только что рассматривали в равенствах (а), (б) и (в), представляет собой фактически точное решение задачи для упругого (или вязкого) материала, удовлетворяющее системе дифференциальных уравнений, записанных в величинах и, V, ш, и относится соответственно к теории упругости или теории вязкого тела (см. уравнения (25.5) и (26.8) т. 1, стр. 442 и 450 в. последнем случае). Кроме того, возможные распределения, которые отклоняются от строго равновесного, также представляют собой такие точные распределения. (Уравнение (а) выражает фактически скорости течения в слое вязкой среды, движущейся между двумя жесткими параллельными пластинками, когда одна из них перемещается относительно другой со скоростью щ и одновременно под действием градиента давления происходит ламинарное движение жидкости вперед, вдоль оси х на рис. 3.2). В случае, описываемом уравнением (а), легко установить, что корректные значения напряжений, отвечающие использованным варьированным состояниям упругой (вязкой) среды, даются более сложным распределением напряжений, которое, помимо измененных значений Хху, включает также нормальные напряжения а и (Ту. Это приводит, таким образом, к увеличению энергии в измененной системе, характеризуемой величинами и, о, ш. Отсюда следует правдоподобный вывод, что при добавлении новых ограничений энергия варьированных состояний увеличивается.  [c.159]

Для решения задач прикладной геомеханики используются физические уравнения теории упругости (линейной и нелинейной),, пластично-вязких течений и др. Кратко остановимся иа основных уравнениях состояния, связывающих напряжения и деформации-Для описания поведения изотропного однородного упругого тела необходимо знать модуль Юнга и коэффициент Пуассона. Кроме этих двух констант, используются две другие упругие константы, которые непосредственно связаны с шаровой и девиатор-ной составляющими тензора напряжений модуль объемной деформации К и модуль сдвига (перекоса) О.  [c.55]

Поскольку иногда детали машин и элементы конструкций работают за пределом текучести, необходимо исследовать зависимость между напряжениями и деформациями в пластической области, где соотношения линейной теории упругости уже неприменимы. Соотношения между деформациями и напряжениями в пластической области в общем случае нельзя считать не зависящими от времени. В любой точной теории пластического деформирования следовало бы учитывать влияние всего процесса изменения пластической деформации с момента начала пластического течения. Соотношения, учитывающие это, были бы очень сложными, они содержали бы в себе напряжения и скорость изменения деформации во времени. Уравнения были бы аналогичны уравнениям течения вязкой жидкости, а деформацию в каждый момент времени следовало бы определять, осуществляя пошаговое интегрирование по всему процессу изменения деформации. Такой подход привел бы к очень трудоемким расчетам даже при решении простейших задач о пластической деформации. Вследствие этого обычно делают некоторые упрощающие предположения, которые позволяют относительно просто исследовать процессы пластического деформирования и получать достаточно простые результаты, пока температура ниже температуры ползучести и в случае обычных скоростей деформации.  [c.118]


Здесь tpi, ipi — плотности обобщенных потенциалов двойного и простого слоя Tij определены в примечании на стр. 53 верхние знаки относятся к внутренним задачам, нижние — к внешним. ИУ (1.5), (1,6) и аналогичные ИУ для задач о стационарных колебаниях однородной и неоднородной упругой среды исследованы в [5, 10, 12]. Подобные ИУ в теории медленных течений вязкой жидкости рассмотрены в [13]. ИУ (1.5), (1.6) относятся к классу двумерных сингулярных интегральных уравнений. Их свойства хорошо изучены в том случае, когда граница области представляет собой поверхность Ляпунова.  [c.186]

Система уравнений, описывающая течение смазки в УГД контакте, выводится с учетом ряда допущений (их обсуждение см., например, в [5, 7, 32]) из уравнений гидродинамики, теплопереноса и теории упругости. Основные допущения заключаются в следующем толщина слоя смазки существенно меньше радиусов контактирующих тел, силы вязкого трения значительно больше инерционных, локально контактирующие тела заменяются полупространствами. Связь между тензором скоростей деформации и тензором напряжений, т.е. реологическая модель среды, является заданной. Зависимости свойств смазки — вязкости, плотности, теплопроводности, теплоемкости — от давления и температуры полагаются известными. Известными являются физические свойства твердых тел. При исследовании микро-УГД смазки задается топография поверхности. Система УГД уравнений замыкается начально-краевыми условиями.  [c.499]

Уравнения (2.7) называются уравнениями установившейся ползучести. По существу, это уравнения течения нелинейно вязкой жидкости. По форме они совершенно совпадают с уравнениями нелинейной теории упругости или деформационной теории пластичности. В предположении, что потенциал Ф — положительно-определенная и выпуклая функция своих аргументов, для установившейся ползучести доказана теорема единственности и формулируются вариационные принципы типа Лагранжа и Кастильяно.  [c.125]

Теория, основанная на уравнении (12), называется теорией Навье — Стокса-, при различных предположениях уравнение (12) или основные его частные случаи были выведены Навье, Коши, Сен-Венаном и Стоксом. Коэффициенты Я, и р, называются вязкостями жидкости. При жестком движении жидкости теория Навье—-Стокса сводится к гидродинамике Эйлера, так что для определяемой этой.теорией жидкости имеет место явление течения в указанном выше смысле а именно, в состоянии покоя такая жидкость способна выдерживать только гидростатические напряжения. При Я, = ц = О линейно-вязкая жидкость превращается в упругую, и по этой причине упругие жидкости иногда называют невязкими или совершенными .  [c.160]

К спорным вопросам методики изложения, принятой в настоящем курсе, мы относим, например, предлагаемый авторами способ вывода общего уравнения энергии на основе первого начала термодинамики ( 4-2). Нам представляется, что традиционный способ использования первого начала термодинамики при выводе уравнения энергии, принятый в лучших отечественных курсах газовой динамики, является более корректным и дает возможность яснее представить сущность делаемых при этом термодинамических допущений. Недостаточно ясна с математической точки зрения трактовка понятий материального метода и метода контрольного объема в 3-6. Оба метода опираются на эйлерово представление о движении жидкой среды. Их противопоставление, как нам кажется, носит иногда искусственный характер. При выводе общих уравнений движения вязкой жидкости — уравнений Навье — Стокса — авторы, видимо, следуя Г. Шлихтингу , опираются на аналогию с напряженным состоянием упругого тела. При этом предполагается знание читателем некоторых вопросов теории упругости. Вряд ли такой способ вывода фундаментальных гидродинамических уравнений будет удобен для любого читателя. Еще одним спорным в методическом отношении местом является то, что изложение теории турбулентного пограничного слоя опережает изложение представлений о турбулентном течении в трубах. Между тем, как известно, теория пограничного слоя использует некоторые зависимости, устанавливаемые при изучении течений в трубах. Поэтому, может быть, естественнее начинать изложение вопроса  [c.7]


Таким образом, удельная скорость диссипации энергии при вязком течении представляет собой прлржИтельно определенную квадратичную форму. Сравнивая (5,23) с уравнениями линейной теории упругости [25, 36], приходим к выводу о существовании упруговязкой аналогии Деформациям в теории упругости соответствуют скорости деформации в теорий вязкого течения, коэффициенту jx соответствует модуль сдвига, а коэффициенту v—модуль объемной Деформации. Этот факт позволяет перенести в теорию вязкого течения многие результаты теории упругости. Однако необходимо помнить, что эти результаты могут касаться только / теории краевых задач вязкого течения, возникающих при применении метода прямых разложений (см. п. 2.1).  [c.130]

Установить аналогию можно следующим образом (см., например, [7]). Запишем уравнения теории упругости в перемещениях, введя в них гидростатическую составляющую тензора напряжений Р — —ke (где k = = Я + VsM — модуль объемного сжатия, е = -и — объемное расширение). Имеем [гДи — /з(1-t-v) VP == 0. Перейдем к случаю несжимаемой упругой среды, устремляя v->0,5 так, чтобы (х и Р оставались конечными (при этом k-yoo, е-кО). В результате получим уравнения, совпадающие-с (1.1), (1.2). Поэтому решения многих задач теории упругости непосредственно приводят к решениям задач о медленных течениях вязкой жидкости. Так, тензор Сомильяна (см. примечание на стр. 53) после предельного перехода дает известное решение задачи о течении, возникающем под действием сосредоточенной силы (стокслета) в произвольной точке жидкости. Менее тривиальный пример рассмотрен в [7], где на основе  [c.185]

В статье, опубликованной в 1843 г., Сен-Венан ссылается на цитированные выше работы Навье, Пуассона и Коши и показывает возможность вывода уравнений движения вязкой жидкости с помощью видоизменения положений теории упругости о пропорциональности касательных напряжений деформациям сдвига без применения гипотез о притяжении и отталкивании отдельных частиц. Он вводит в рассмотрение направления главных скоростей скошения и главных тангенциальных напряжений, принимает гипотезу о совпадении этих направлений при движении жидкости и в конце концов получает два вида соотношений 1) соотношения пропорциональности разностей нормальных напряжений разностям соответственных скоростей удлинений и про-цррциональности касательных напряжений соответственным скоростям сдвига с общим коэффициентом пропорциональности, представляющим собой коэффициент вязкости жидкости, и 2) соотношение, связывающее линейной неоднородной зависимостью среднее арифметическое от нормальных напряжений со скоростью объёмного расширения. Из этих соотношений Сен-Венан получает соотношения Пуассона и Коши для отдельных компонент напряжения. В другой статье, в том же томе Докладов Парижской Академии наук (стр. 1108—1115) Сен-Венан применяет уравнения движения вязкой жидкости к случаю течения  [c.19]

ТО МОЖНО показать, что эта функция будет удовлетворять бн-гармоннческому уравнению, описывающему вязкое течение жидкости н нзгнб пластин. Поэтому с помощью программы расчета пластин можно решать плоские задачи теории упругости.  [c.341]

Приближенное решение для ламинарного течения в призматических трубах произвольного сечения с достаточной для практических расчетов точностью может быть получено на основании применения рассматриваемой в теории упругости так называемой гидродинамической аналогии при кручении. Эта аналогия впервые была установлена Буссинеском, показавшим, что дифференциальные уравнения и условия на контуре, служащие для определения функции напряжений ф при кручении призматических стержней, тождественны с уравнениями для определения скоростей различных слоев вязкой жидкости при ее движении по трубе того же поперечного сечения, что и скручиваемый [стержень.  [c.152]

Р. С. Ривлиным [34] были предложены общие уравнения реологического состояния для упруго-вязкой жидкости при наличии зависимости напряжений от скоростей и ускорений деформаций. Из общих теорем тензорного анализа известно, что при наличии такого рода зависимостей тензор напряжений будет квадратичной функцией как от тензора скоростей деформаций, так и от тензора ускорений деформаций со скалярными коэффициентами, зависящими от инвариантов указанных кинематических тензоров. Совершенно очевидно, что наличие квадратичных чле7юв в тензорных уравнениях реологического состояния всегда приводит к появлению нормальных напряжений для случая течения жидкости в условиях простого сдвига. Однако наличие большого числа  [c.31]

Рассматриваемый метод относится к феноменологическому и учитывает наиболее характерные свойства твердого тела и жидкости. В частности, для твердого тела характерно различие напряжений в точке, где нормальные напряжения зависят от ориентации элементарной площадки, в отличие от идеальной жидкости, где напряжения в точке (давление) одинаковы во всех направлениях. В то же время, если имеется уравнение (метод), позволяющее найти три различных напряжения, то может существовать и частный случай, при котором все три напряжения в точке одинаковы. В теории упругости такой частный случай получил собственное название - "гидростатическое сжатие" [32]. Таким образом, определив три различных напряжения в вязкой жидкости, можно найти и частный случай этого рещения, характерный для идеальной жидкости, где эти напряжения будут одинаковыми. Такая схема рещения, как оказалось, не дает единственного рещения, и полученные результаты необходимо проверять. Схема рещения таких задач рассматривается в главе 2. Если какое-либо из полученых рещений для невязкой жидкости удовлетворяет уравнению Эйлера, то оно описывает течение идеальной жидкости. Эти и другие соображения позволили рещить частную задачу механики жидкости с помощью одной из известных задач теории упругости в предположении о квазитвердом характере течения несжимаемой жидкости [27, 28, 32].  [c.5]


Помимо нескольких простых задач, описываемых квазигар-моническим уравнением, будут рассмотрены некоторые задачи о вязком течении, описываемые уравнениями более высоких по--рядков [7]. При этом будет упомянута другая постановка некоторых задач теории упругости [8].  [c.317]


Смотреть страницы где упоминается термин Уравнение теории вязко-упругого течения : [c.122]    [c.382]   
Теория пластичности (1987) -- [ c.232 ]



ПОИСК



Вязко-упругость

Теории Уравнения

Теория течения

Теория упругости

Упругость Теория — см Теория упругости

Уравнения Уравнения упругости

Уравнения тел вязких

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте