Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчеты конструкций упрощенные

Приступая к расчету конструкции, следует прежде всего установить, что в данном случае существенно и что несущественно необходимо произвести схематизацию объекта и отбросить все факторы, которые не могут сколько-нибудь заметным образом повлиять на суть задачи. Такого рода упрощение задачи или выбор ее схемы во всех случаях совершенно необходим, так как решение с полным учетом всех свойств реального объекта является принципиально невозможным вследствие их очевидной неисчерпаемости.  [c.11]


Производить расчет конструкций с учетом всех их конструктивных особенностей было бы весьма сложно, а в некоторых случаях, исходя из современного уровня развития науки, даже невозможно. Вместе с тем нет никакой необходимости учитывать все особенности конструкции, так как они часто оказывают несущественное влияние на работу сооружения. Поэтому при расчете реальной конструкции ее всегда заменяют идеализированной упрощенной системой — так называемой расчетной схемой, выбор которой является первым и исключительно ответственным этапом расчета. От этого выбора зависят и точность и трудоемкость его. Иногда излишнее даже небольшое уточнение расчетной схемы влечет за собой существенное усложнение расчета. Напротив, из-за недостаточно обоснованного упрощения расчетной схемы в расчете может быть допущена существенная непозволительная ошибка. Расчетная схема должна удачно отражать основной характер работы реальной конструкции, устраняя несущественные, втор о-с 1 е п е н н ы е факторы.  [c.26]

Полный учет условий работы конструкции. Методы, применяемые при расчете на машине, настолько совершенны, что позволяют отказаться от многих упрощающих допущений. Возможен полный учет геометрической формы детали, сложного распределения нагрузок и температур, упругой неоднородности материала детали и т. д. В основу расчета могут быть положены реальные характеристики материалов и учтена их зависимость от температуры [1]. Вместо расчета по упрощенным схемам можно находить поля главных напряжений и их траекторий для двухмерных и трехмерных упруго-неоднородных деталей и конструкций.  [c.611]

Чтобы создать конструкцию легкую и прочную, с высокими техническими показателями, конструктор обязан начинать расчеты с первых стадий проектирования. В начале проектирования не следует производить сложных расчетов большой точности. На начальных стадиях известные величины и параметры недостаточно точны и могут изменяться в процессе дальнейшего проектирования. Здесь имеют место приблизительные, предварительные расчеты по упрощенной методике.  [c.134]

Проектные расчеты применяются для определения исходных данных для установления размеров узлов и деталей несложной конфигурации, причем эти расчеты ведутся по упрощенной методике. Основные этапы проведения проектного расчета составляют упрощенную расчетную схему сил и моментов определяют расчетом их численные значения выбирают материалы по механическим и технологическим свойствам с учетом их стоимости и дефицитности определяют размеры деталей и согласовывают их с данными стандартов вырисовывают детали в сборе и проверяют их на соответствие выбранной конструкции. Если необходимо, конфигурацию детали меняют и расчет повторяют.  [c.135]


Упрощенные расчеты конструкций  [c.34]

Если К 1с известно, то расчет конструкции может быть произведен по упрощенной схеме. В качестве исходной точки берется формула (5.5)  [c.27]

Доля составляющих стоимости электроэнергии и конструкций для размещения осветительных приборов в общей сумме приведенных затрат значительна и, как правило, превышает 75 %. Поэтому в сравнительных технико-экономических расчетах при проектировании осветительных установок можно не учитывать составляющие приведенных затрат на ревизию осветительной установки, смену перегоревших ламп, отчисления на социальное страхование и стоимость электрооборудования, не снижая при этом качества расчетов. Тогда упрощенную формулу (10.7) условных приведенных затрат можно записать в следующем виде  [c.166]

Требуют к себе внимания также вопросы теории удара. Наиболее точная теория удара не применяется в проектных организациях при расчетах конструкций на удар ввиду ее чрезвычайной сложности и неопределенности некоторых параметров. Однако, здесь возможны значительные упрощения, не вносящие существенных погрешностей в результаты расчета, обосновать которые можно только дальнейшими исследованиями Явлений удара.  [c.35]

При выводе расчетных формул для упрощения расчета конструкции несколько схематизируют жесткости стенок, жесткости перегородок и расстояния между перегородками принимают одинаковыми если станина на каких-то участках соединяется с элементами, существенно увеличивающими ее жесткость, то жесткость этих участков полагается бесконечно большой, и т. п.  [c.266]

Расчет сложной системы при соотношениях параметров, близких к реальным, можно свести к расчету нескольких упрощенных схем. Так, при малом приведенном коэффициенте жесткости опорной конструкции по сравнению с коэффициентами жесткости под-  [c.481]

Влияние перечисленных факторов на работу реального Т. сильно зависит от его конструкции и поэтому их трудно количественно учесть. В практич. расчетах пользуются упрощенной моделью Т., основанной на след, предположениях зависимость между II и В однозначна и линейна потерями энергии, связанными с токами Фуко и паразитными емкостями, можно пренебречь полный поток магнитного поля Т. Ф можно разбить на три потока Ф — поток внутри сердечника, охватывающий все обмотки Т. (о с н о в-н о й поток) Фх — поток, охватывающий все витки только первичной обмотки, Фа — только вторичной обмотки (потоки р а с с е я и и я). Эти допущения достаточно хорошо выполняются для фер-  [c.197]

При проектном расчете число неизвестных обычно превышает число расчетных уравнений. Поэтому некоторыми неизвестными параметрами задаются, принимая во внимание опыт и рекомендации, а некоторые второстепенные параметры просто не учитывают. Такой упрощенный расчет необходим для определения тех размеров, без которых невозможна первая чертежная проработка конструкции. В процессе проектирования расчет и чертежную проработку конструкции выполняют параллельно. При зтом ряд размеров, необходимых для расчета, конструктор определяет по эскизному чертежу, а проектный расчет приобретает форму проверочного для намеченной конструкции. В поисках лучшего варианта конструкции часто приходится выполнять несколько вариантов расчета. В сложных случаях поисковые расчеты удобно выполнять на ЭВМ. То обстоятельство, что конструктор сам выбирает расчетные схемы, запасы прочности п лишние неизвестные параметры, приводит к неоднозначности инженерных расчетов, а следовательно, и конструкций. В каждой конструкции отражаются творческие способности, знание и опыт конструктора. Внедряются наиболее совершенные решения.  [c.8]

Как следует из схемы, представленной на рис. В.1, информация о НДС является ключевой для анализа прочности и долговечности элементов конструкций. Поэтому правильность оценки работоспособности той или иной конструкции в первую очередь зависит от полноты информации о ее НДС. Аналитические методы позволяют определить НДС в основном только для тел простой формы и с несложным характером нагружения. При этом реологические уравнения деформирования материала используются в упрощенном виде [124, 195, 229]. Анализ НДС реальных конструкций со сложной геометрической формой, механической разнородностью, нагружаемых по сложному термо-силовому закону, возможен только при использовании численных методов, ориентированных на современные ЭВМ. Наибольшее распространение по решению задач о НДС элементов конструкций получили следующие численные методы метод конечных разностей (МКР) [136, 138], метод граничных элементов (МГЭ) [14, 297, 406, 407] и МКЭ [32, 34, 39, 55, 142, 154, 159, 160, 186, 187, 245]. МКР позволяет анализировать НДС конструкции при сложных нагружениях. Трудности применения МКР возникают при составлении конечно-разностных соотношений в многосвязных областях при произвольном расположении аппроксимирующих узлов. Поэтому для расчета НДС в конструкциях со сложной геометрией МКР малоприменим. В отличие от МКР МГЭ позволяет проводить анализ НДС в телах сложной формы, но, к сожалению, возможности МГЭ ограничиваются простой реологией деформирования материала (в основном упругостью) [14]. При решении МГЭ упругопластических задач вычисления становятся очень громоздкими и преимущество метода — снижение мерности задачи на единицу, — практически полностью нивелируется [14]. МКЭ лишен недостатков, присущих МКР и МГЭ он универсален по отношению к геометрии исследуемой области и реологии деформирования материала. Поэтому при создании универсальных методов расчета НДС, не ориентированных на конкретный класс конструкций или вид нагружения, МКЭ обладает несомненным преимуществом по отношению как к аналитическим, так и к альтернативным численным методам.  [c.11]


Для снижения методической погрешности при использовании моделей средних значений важно осуществить рациональное условное деление конструкции ЭМУ на отдельные элементы, либо увеличить число таких разбиений. Но в последнем случае метод приближается к методу сеток и становится громоздким, в то время как практически важно получение высокой точности расчетов при ограниченной дискретизации. При умелом применении схем замещения методическая ошибка в сравнении с методом сеток составляет обычно не более 5 % даже при ограниченной степени дискретизации. По крайней мере, это заметно меньше, чем погрешности от неточности задания входной информации. При выборе числа разбиений важен и характер решаемой задачи. При грубой оценке показателей поля возможна упрощенная схема замещения с пятью-шестью укрупненными телами (ротора в целом, объединенных обмотки и пакета статора и т.д.). Если необходим анализ изменения осевой нагрузки на подшипники, то особо подробно должны быть представлены тела, входящие в замкнутую размерную цепь их установки, а остальные элементы могут рассматриваться укрупненно. При анализе относительных температурных деформаций требуется наиболее детальная дискретизация ЭМУ, особенно для элементов, имеющих различные коэффициенты линейного расширения. Здесь ТС, например, должна содержать не менее 15—20 тел.  [c.127]

Этот вопрос представляет значительный практический интерес для специальностей, связанных с химическим и пищевым машиностроением, но и для других машиностроительных специальностей также полезно кратко рассмотреть этот вопрос. Учащиеся получают первичное представление о расчете тонкостенных сосудов, т. е. получают возможность оценивать прочность не только бруса, но и других элементов конструкций. Познакомившись при изучении гипотез прочности с формулами для вычисления эквивалентных напряжений, хотя они ими (речь идет о формулах, в которых Оэкв выражено через главные напряжения) не пользовались, и, привыкнув к формулам для упрощенного плоского напряженного состояния, начинают считать их общими, применимыми во всех случаях. В тонкостенных сосудах они встречаются с другим случаем плоского напряженного состояния (с двухосным растяжением) и получают хорошую иллюстрацию к использованию общих формул  [c.218]

В методиках расчета, разработанных Институтом машиноведения АН СССР, сделан ряд допущений и упрощений, позволяющих выполнить расчет прочности и долговечности в рамках инженерных возможностей — с использованием аналитических зависимостей для кривых малоциклового разрушения, базовых статических и циклических свойств материала и схематизированных режимов эксплуатационного нагружения. Расчет местных напряжений и упруго-пластических деформаций проводится на базе коэффициентов концентрации напряжений и деформаций в упругой области. Эти коэффициенты устанавливаются по теоретическим коэффициентам для заданных уровней номинальных нагружений с учетом сопротивления материалов неупругим деформациям при статическом и циклическом нагружении. Нестационарность режимов нагружения в инженерных расчетах учитывается по правилу линейного суммирования повреждений. Расчеты выполняются для стадии образования трещины в наиболее нагруженных зонах рассматриваемых элементов конструкций.  [c.371]

Под построением расчетной схемы чаще понимают более узкую задачу построения модели элемента конструкции или модели всей конструкции — второй этап. Этот весьма ответственный этап расчетов на прочность, жесткость и устойчивость требует большой инженерной интуиции и глубокого знания. При построении расчетной схемы конструкции ее заменяют упрощенной моделью, сохраняющей при этом все основные, наиболее характерные качества оригинала. Например, при решении задачи о деформировании и прочности стержня, один конец которого заделан в достаточно  [c.18]

На расчетной схеме вместо бруса изображается его ось. При составлении расчетной схемы конструкции применяются и другие упрощения, облегчающие ее расчет. На рис. 1.2, а показаны брус и действующие на него (в плоскости чертежа) внещние сосредоточенные силы Р2, Р3. На рис. 1.2,  [c.7]

В последние годы в Советском Союзе расчет строительных конструкций производят методом расчетных предельных состояний, разработанных советскими учеными проф. Н. С. Стрелецким, проф. А. А. Гвоздевым и др. Специфика этого метода заключается в особом подходе к определению расчетных нагрузок и расчетных сопротивлений элементов конструкций. Усилия же, возникающие в конструкции, и ее перемещения в целях упрощения расчетов обычно определяются по упругой стадии, т. е. в предположении, что напряжения в конструкции не превышают предела пропорциональности.  [c.600]

При схематизации реальных объектов в сопротивлении материалов делаются также упрощения и в системе сил, приложенных к элементу конструкции, в частности, вводится понятие сосредоточенной силы. Например, при расчете бруса, показанного на рис. 3, а, можно рассматривать груз Р как силу, приложенную в точке (рис. 3, в). Такое упрощение является естественным, поскольку размеры площадки, по которой происходит передача силы на брус (рис. 3, б), малы по сравнению с общими размерами бруса. Ясно, что в реальных конструкциях передача усилий в точке неосуществима, и сосредоточенная сила представляет собой понятие, свойственное только расчетной схеме.  [c.14]

В инженерной практике на срез (сдвиг) рассчитывают крепежные детали и соединительные элементы частей машин и строительных конструкций заклепки, болты, шпильки, сварные швы, врубки и т. д. Эти детали или не являются стержнями вообще, или их длина имеет тот же порядок, что и поперечные размеры. Точное решение подобных задач весьма сложно, поэтому применяют условные приемы расчета. При такого рода расчетах исходят из упрощенных схем, определяют не действительные, а условные напряжения. и сравнивают их с допускаемыми напряжениями, найденными из опыта.  [c.110]


Для упрощения расчетов элементов конструкций на прочность, жесткость и устойчивость приходится прибегать к некоторым допущениям и гипотезам о свойствах материалов и характере деформаций. Основные допущения о свойствах материалов сводятся к следующему  [c.61]

Как уже отмечено, сопротивление материалов рассматривает типовые элементы конструкций. В зависимости от формы различают стержневые элементы, пластины и оболочки, К стержневым относят элементы, у которых поперечные размеры малы по сравнению с длиной. У пластин толщина существенно меньше размеров элемента в плане. Оболочкой является замкнутый элемент, толщина которого мала по сравнению с другими размерами. Здесь же отметим, что существенной особенностью постановки задач в сопротивлении материалов является широкая экспериментальная проверка предлагаемых решений. Методы сопротивления материалов изменяются вместе с возникновением новых задач и требований практики. При ведении инженерных расчетов методы сопротивления материалов следует применять творчески. Успех практического расчета лежит в умении найти наиболее удачные упрощения и в доведении расчета до количественных оценок.  [c.147]

Учесть все многообразие силовых факторов, действующих на механизм (машину, прибор), а также все особенности самой конструкции при расчете на прочность невозможно. Поэтому при расчетах и проектировании учитываются лишь главные факторы и главные особенности формы, и вместо реальной конструкции рассматривают ее упрощенный прототип, называемый расчетной схемой.  [c.123]

По форме выполнения шины имеют различную конструкцию. Для упрощения расчета шины сложной формы разбиваются на однотипные участки. Формы шин могут быть сведены к следующим двум основным.  [c.112]

До сих пор мы говорили об изоляционных свойствах отдельных материалов. Но когда материал наносится на объект, то вследствие примесей и способа нанесения изоляционные свойства материала меняются. В этом случае правильное представление об изоляции дает не коэффициент теплопроводности материала, а коэффициент теплопроводности всей конструкции в целом, который для практики имеет большее значение. Приближенно коэффициент теплопроводности конструкции определяется расчетным путем. Однако точное его значение можно определить лишь путем опыта. Последнее можно сделать как в лаборатории, так и в промышленных условиях. Для расчета тепловой изоляции применяются обычно формулы теплопередачи, которые подробно были рассмотрены выше все сказанное там относительно их упрощений полностью сохраняет силу и здесь. При расчете изоляции следует придерживаться следующего порядка. Сначала устанавливаются допустимые тепловые потери объекта при наличии изоляции. Затем выбирают сорт изоляции и, задавшись температурой на поверхности изоляции, определяют среднюю температуру последней по которой определяется соответствующее значение коэффициента теплопроводности Я з. При расчете изоляции термическим сопротивлением теплоотдачи от горячей жидкости к стенке и самой стенки можно пренебречь. Тогда температуру изолируемой поверхности можно принять равной температуре горячей жидкости. Зная температуры на внутренней и внешней поверхностях изоляции и коэффициент теплопроводности, определяют требуемую толщину изоляции б з. После этого производится поверочный расчет и определяются значения средней температуры изоляционного слоя и температуры на поверхности. Если последние от предварительно принятого значения отличаются существенно, то весь расчет повторяют снова, задавшись новым  [c.217]

Учет местной податливости в зонах контакта. В работе [9] был рассмотрен способ учета местной податливости в узких кольцевых зонах контакта с нераскрытым стыком при расчете конструкции методом строительной механики оболочек и колец. При этом были использованы коэффициенты местной податливости, полученные в [10] численным методом осесимметричной теории упругости. Применительно к корпусной конструкции с фланцевым соединением, содержащим два нажимных кольца, стянутые длинными шпильками, было показано, что пренебрежение контактными моментами приводит к существенному занижению жесткости корпусных оболочечных конструкций и завышению изгибных напряжений в галтель-ных переходах фланцев. Метод учета контактных податливостей для нераскрытых стьпсов, предложенный в работе [9], так же как и полученный в ней вывод о погрешности упрощенного расчета, применимы к рассматриваемой здесь конструкции (см. рис. 2.1).  [c.132]

В инженерной практике встречаются два вида расчета проектный и проверочный. Проектный расчет — предварительный, упрощенный расчет, выполняемый в процессе разработки конструкции детали (машины) в целях определения ее размеров и материала. Проверочный расчет — уточненный расчет известной конструшщи, выполняемый в целях проверки ее прочности или определения норм нагрузки.  [c.10]

В третьей части особое внимание уделено простым аналитическим методам расчета типичных элементов конструкций ракет. Приводимые здесь примеры не могут дать даже отдаленного представления о тех мощных комплексах программ, какими пользуются при уточненных современных прочностных расчетах. Но упрощенные методы расчета не потеряли и, видимо, еще очень долго не потеряют своего значения. Во-первых, простые аналитические решения, наглядно.ограждающие влияние отдельных параметров конструкции, необходимы для правильного понимания особенностей силовой схемы конструкции раке-тьь Во-вторых, умение пользоваться простыми методами расчета, не требующими сложных программ счета, с одной стороны, избавляет проектировщика от необходимости каждый раз прибегать к помощи мощных ЭВМ для получения оперативного результата на начальной стадии проектирования, с другой сторрны, помогает ему контролировать и правильно истолковывать результаты уточненных поверочных расчетов. Наконец, упрощенные аналитические методы используются в системах автоматизированного проектирования на этапах оптимизации силовых конструкций, когда производится многократное повторение прочностного расчета с целью подбора оптимальных параметров отдельных элементов и всей конструкции.  [c.4]

В практических расчетах элементов конструкций на прочность и устойчивость широко применяются так называемые прикладные теории оболочек. При их создании обычно принимают дополнительные упрощения, которые позволяют получить простые аналитические решения задач. Однако эти теории могут быть использованы для расчета только определенного класса конструкций. Например, рассмотренная в этой главе теория краевого эффекта применяется для определения напряжений лишь на узких участках оболочек, близких к цилиндрическим. Теория пологих оболочек используется при расчете элементов, геометрия которых мало отличается от плоских пластин. С помощью полубезмомент-ной теории удается получить простые формулы для расчета тонкостенного цилиндра, когда изменяемость деформированного состояния по окружности существенно выше, чем вдоль образующей. Теория мягких оболочек применяется при расчете конструкций весьма малой толщины, в тех случаях когда можно не учитывать изгибающие моменты.  [c.146]

Корпус современного ракетного двигателя твердого топлива является сложной оболочечной конструкцией, уточненный расчет которой может быть выполнен только на ЭВМ с помощью численных методов, описанных в гл. 12. Но для оценочных проектировочных расчетов используют упрощенные аналитические зависимости, основанные на теории безгломентных оболочек (в некоторых случаях с учетом краевого эффекта).  [c.372]


Поскольку одной из основных задач любой теории деформирования является расчет конструкций в эксплуатационных условиях, отмеченная близость кривых деформирования идеально вязких подзлементов к диаграмме идеальной пластичности будет иметь немаловажное значение в ходе дальнейшего изложения. Отсюда, как будет показано, вытекают возможности для существенного упрощения анализа поведения материалов и конструкций. С другой стороны, различие между двумя видами неупругой деформации — склерономной (пластической) и реономной (вязкой) в свете рассматриваемой теории микронеоднородной среды оказывается непринципиальным (этот вопрос более подробно будет проанализирован в гл. 6).  [c.46]

В процессе приближенного моделирования устойчивости тонкостенных систем, так же как и при расчетах, рассматриваются упрощенные схемы конструкций. При выборе расчетных схем работа реального объекта в той или иной степени идеализируется. Отбрасываются все второстепенные факторы, слабо влияющие на функционирование конструкции. Упрощается ее геометрия и характер опорных устройств. Возможные внешние нагрузки заменяются вполне определенными сосредоточенными или распределенными силами. Предполагается, что материалы модели и натуры также имеют вполне определенные заданные механические свойства.  [c.161]

Если определение предельных состояний грунтовых массивов можно отнести к обобщенной теории пластичности, то расчет конструкций на упругом основании можно считать разделом теории упругости. При этом основание рассматривалось или как упругое тело, или моделировалось при помощи гипотезы коэффициента постели Винклера — Фусса. При расчете плит и балок на такой упрощенной модели упругого основания использовался, как правило, тот же аппарат, что и для конструкций, опертых по точкам и линиям. С целью уточнения расчета в 30-х годах предлагался ряд уточнений теории Винклера — Фусса, связанных, например, с введением двух коэффициентов постели, однако в дальнейшем предпочтение было отдано расчету конструкций на подстилающем слое конечной толщины.  [c.275]

Полная методология описания условий остановки трещины должна предусматривать знание трещинострйкости материала как функции скорости трещины и возможность динамического анализа поля напряжений в теле с трещиной, что позволит применять это знание для расчета конструкций. Учет реальных трудностей такогд подхода делает желательным разработку более простых методов оценки трещиностойко-сти на стадии остановки трещины. Хотя упрощенный подход может быть менее строг, он может иметь практическую инженерную ценность. Сомнения в полезности оценки трещи-ностойкости остановки трещины К а базируются на том, что в нее не включены в явном виде динамические эффекты — инерционные силы, кинетическая энергия, отраженные волны напряжений. И все же измерения К а дают замечательно согласующиеся величины при условиях, когда можно ожидать различные динамические эффекты. Обзор полученных данных приведен в работе [1]. Авторы придерживаются точки зрения, что параметр Кы достаточно перспективен как имеющий смысл и полезный инженерный параметр, чтобы оправдать дальнейшие усилия по его определению и измерению.  [c.200]

Линии натурного плаза прочерчивают плазовыми красками при помощи специального рейсфедера. Конструкция упрощенного рейсфедера следующая. Латунная гильза диаметром 20 мм и длиной 200 мм запаивается снизу конической насадкой с отверстием диаметром 1 мм. Сверху нарезается резьба и ставится заглушка, также с отверстием для прохода воздуха. На коническую часть во время работы насаживают медицинскую иглу, гильзу заполняют краской и завинчивают сверху заглушкой. Краска медленно течет через иглу и при прочерчивании оставляет линии. Иглу подбирают с таким расчетом, чтобы ширина прочерченной линии была не более 1 мм.  [c.36]

Для упрощения решения этой задачи Вейнхольд в своих работах [5], [6] заменил диаграммы всех применяемых сплавов единой обобщенной кривой, имеющей сложное аналитическое выражение, и разработал метод безразмерных параметров, позволяющий использовать эту обобщенную кривую при расчете конструкций из любых сплавов. Этот метод был использован при составлении в ТУ СН ПЗ—60 [1] таблиц для коэффициентов pв . Однако отсутствие экспериментальных работ по устойчивости внецентренно сжатых стержней из отечественных сплавов не давало возможности авторам технических условий оценить точность использованного метода в ппименении к алюминиевым сплавам, рекомендованным в ТУ СН 113—60. Кроме этого, сравнение обобщенной кривой (по Вейнхольду) и экспериментально определенной диаграммы з — г сплава АВ-Т1, нанесенных на один чертеж (рис. 1), указывает на их существенное отличие в пластической стадии.  [c.168]

Эта теория приводит при расчетах конструкций к существенным упрощениям по сравнению с наследственной теорв1ей старения и наследственной теорией ползучести. Именно последним обстоятельством объясняется весьма широкое применение теории старения в расчетах бетонных и железобетонных конструкций.  [c.443]

Если проектируется нетиповое сооружение или разрабатывается новый типовой проект, то производится подбор аналогов Я уже запроектированных или построенных конструкций. Сведения об этих конструкциях также должны храниться в памяти ЭВМ 6. В результате сравнения машина выдает данные о нескольких сооружениях, близких по своему характеру и основным показателям к проектируемому. Возможно и смешанное направление, когда рассматриваются и типовые 4, и нетиповые 6 решения или когда часть сооружения выполняется из типовых, а часть — из элементов индивидуальной проектировки. Полученные аналоги проектируемого сооружения служат лишь исходными данными для вариантного проектирования 9, которое может выполнять ЭВМ, а чаще — проектировщик. При этом он может пользоваться комплектом программ конструктивных и экономических расчетов 10, дающих необходимыесведения для сопоставления и сравнения вариантов. Этот комплект должен состоять из программ, не требующих значительных затрат машинного времени для счета и работающих на основе минимума исходных данных. Проектировщик должен иметь возможность легко и быстро вызывать необходимую программу или несколько программ, изменять исходные данные и получать результаты расчета. По окончании вариантного проектирования инженер выбирает основной вариант конструкции 11 и согласовывает его со всеми заинтересованными организациями. Далее производится подробный расчет конструкции 12 с использованием как комплекта программы ориентировочных расчетов 10, так и программ уточненных расчетов 13. В зависимости от имеющихся устройств вывода выдается только цифровая или алфавитно-цифровая и графическая информация. Из-за несовершенств графических устройств обычно имеется возможность получать лишь чертежи общего вида, упрощенные схемы конструктивных элементов, таблицы объемов работ, спецификации.  [c.378]

Для упрощения процедуры расчета механических характеристик сварных соединений оболочковых констр 1сций по данным испытаний вырезаемых образцов можно предложенный алгоритм представить в виде номограмм. В качестве примера на рис. 3.38 представлена номо-фамма, позволяющая по известным значениям геометрических параметров образцов сварных соединений и конструкций и экспериментальным данным сГт,в(0) полученным при испытании образцов, определить искомые характеристики соединений <7т,в(к) удобства пересчета наиболее приемлемыми являются образцы круглого поперечного сечения, для которых, Рх = 1, Номограмма построена для случая, когда соединение ослаблено прямолинейной прослойкой. Используя расчетные зависимости, приведенные в настоящем разделе, можно по аналогии построить номограммы и для других типичных геометрических форм мягких прослоек.  [c.156]

Расчеты на сопротивление усталости (или упрощенно — расчеты на усталость) имеют в технике очень большое значение. На усталость при изгибе рассчитывают валы и вращаюшиеся оси, на контактную усталость и изгиб рассчитывают зубья зубчатых передач, катки фрикционных передач и многие другие детали. Потеря работоспособности и поломки деталей конструкций нередко происходят из-за усталости материала.  [c.283]


Смотреть страницы где упоминается термин Расчеты конструкций упрощенные : [c.99]    [c.441]    [c.3]    [c.163]    [c.163]    [c.406]    [c.99]   
Справочник по композиционным материалам Книга 2 (1988) -- [ c.34 , c.39 ]



ПОИСК



ВАК-12-28,5 (упрощенная)

Упрощенный расчет



© 2025 Mash-xxl.info Реклама на сайте