Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конструкции авиации

В отличие от существующих методов расчета по допускаемым напряжениям в общем машиностроении и по разрушающим нагрузкам в авиации и ракетной технике, где вероятностная природа нагрузок и несущей способности скрыта либо в коэффициенте запаса прочности, либо в коэффициенте безопасности, в данной работе характеристики вероятностного описания нагрузок и несущей способности непосредственно входят в формулы для определения размеров поперечного сечения, обеспечивающих заданную надежность элемента конструкции. Такой подход более адекватно отражает реальную работу элемента конструкции.  [c.3]


В конце второй мировой войны в авиации появились реактивные двигатели. Самолеты с поршневыми двигателями могут развивать наибольшую скорость до 800 км/ч, а самолеты с реактивными двигателями — до 3000 км/ч и выше. Однако и эта скорость не является пределом для таких самолетов. Такое различие в скоростях объясняется тем, что реактивные двигатели по сравнению с поршневыми способны развивать огромные мощности при сравнительно малом весе и простоте конструкции.  [c.289]

Сочетание прочности, легкости, термостабильности и коррозионной стойкости делает титановые сплавы превосходным конструкционным материалом, особенно когда конструкции работают в широком температурном диапазоне. В сверхзвуковой авиации, где вследствие аэродинамического нагрева температура оболочек достигает 500 —600°С, титановые сплавы используют для изготовления обшивок и силовых элементов. Благодаря малой плотности и хладостойкости иг широко применяют в космической технике. Из них изготовляют детали, подверженные высоким инерционным нагрузкам, в частности скоростные роторы, напряжения в которых прямо пропорциональны плотности материала. Температуростойкие титановые сплавы применяют для изготовления лопаток последних ступеней аксиальных компрессоров и паровых турбин. Высокая коррозионная стойкость при умеренных температурах обусловливает применение титановых сплавов в химической и пищевой промышленности.  [c.188]

Пластины в настоящее время нашли широкое применение в различных областях техники — строительстве, авиации, судостроении, в машиностроении и т. д. Это объясняется тем, что присущие тонкостенным конструкциям легкость и рациональность форм сочетаются с их высокой несущей способностью, экономичностью и хорошей технологичностью. В данной главе будут рассмотрены вопросы расчета прямоугольных и круглых пластин.  [c.146]

В технике широко применяют пластины и оболочки, усиленные ребрами. Так, типичная для авиации и ракетной техники конструкция оболочки представляет собой каркас из колец — шпангоутов и продольных ребер — стрингеров. С каркасом, соединяется обшивка из тонкого листа. Если стрингеры и шпангоуты расположены достаточно часто, для расчетных целей такую оболочку можно заменить сплошной анизотропной оболочкой, выбрав надлежащим образом параметры анизотропии. Обычно такая анизотропия называется конструктивной в отличие от физической . На самом деле такое различение довольно условно, в том и другом случае анизотропия свойств определяется строением тела, разница лишь в размерах дискретных структурных элементов.  [c.41]


Система учета должна, с одной стороны, иметь общую форму для различных изделий, с другой — учитывать разнообразие конструкций, условий эксплуатации и режимов работы машин. Кроме того, необходимо стремиться к минимальным трудозатратам по сбору данных. Для этой цели с успехом может применяться система выборок вместо полного сбора данных по всем эксплуатируемым изделиям. Примером создания отраслевой информационной системы надежности может служить система сбора информации о неисправностях техники в гражданской авиации [91 ].  [c.409]

Книга может быть полезна специалистам, занимающимся анализом разрушений металлических элементов конструкций, которые работают не только в авиации, но и в других отраслях промышленности. Это обусловлено рассмотрением общей методологии развития процесса усталостного разрушения металлов на основе Ре-, Ti-, А1-, Ni-, Mg-, что охватывает практически весь спектр металлических конструкций, которые используются в настоящее время в различных отраслях промышленности, в том числе и в атомной энергетике. Поэтому она может оказаться полезной и для материаловедов, занимающихся совершенствованием эксплуатационных характеристик металлов и сплавов. Она необходима конструкторам, занимающимся проектированием современных ВС и моделирующим процессы распространения усталостных трещин в элементах конструкций с учетом реальных условий эксплуатации, внедряющим различные средства неразрушающего контроля для обоснования периодичности осмотров элементов конструкций в эксплуатации, особенно при использовании методов неразрушающего контроля авиационной техники.  [c.17]

Ниже последовательно рассмотрены общие закономерности поведения конструкционных материалов с развивающимися в них усталостными трещинами в условиях многопараметрического воздействия. Предложено единое кинетическое описание поведения материала на основе анализа параметров рельефа излома с введением представления об эквивалентном уровне напряжения. Обобщены количественные характеристики процесса роста усталостных трещин в элементах конструкций воздушных судов гражданской авиации, полученные в рамках проведения исследований причин их разрушения в условиях эксплуатации. Помимо того, рассмотрены вопросы эксплуатационного контроля с корректировкой периода осмотра конструкций на основе данных количественной фрактографии проведен обзор способов торможения или задержки роста усталостных трещин в элементах конструкций.  [c.22]

Проектирование воздушных судов (ВС) гражданской авиации, как и других видов техники, основано на систематизации внешних нагрузок с их последующим использованием для определения ресурса или долговечности тех зон или элементов конструкции, которые наиболее нагружены. По ним может быть установлен минимальный срок эксплуатации или ресурс всей конструкции, начиная с которого весьма вероятно возникновение повреждения и даже разрушение наиболее нагруженных элементов конструкции.  [c.26]

Опыт эксплуатации ВС гражданской авиации показал, что в пределах существующих ресурсов в отдельных элементах конструкции возникают и развиваются усталостные трещины на значительную длину или глубину [72-88]. Это может происходить по разным причинам. Так, например, сопоставление долговечностей на начальном этапе эксплуатации одного из транспортных самолетов по критерию роста усталостных трещин в обшивке крыла в эксплуатации и на стенде по специальным программам, моделирующим условия эксплуатации, показало следующее [73]. При введении ВС в эксплуатацию нагружение обшивки в полете рассматривали, исходя из эквивалента программы испытания на выносливость по расчету 2,0. Сопоставление со статистическими данными по появлению усталостных трещин в процессе увеличения срока эксплуатации ВС выявило (табл. 1.2), что значение эквивалента программы испытаний для средней части крыла транспортного самолета по критерию роста усталостных трещин состав.ляет 0,31. Расчетный эквивалент программы испытаний на выносливость существенно отличался от статистических данных по наработке к моменту появления усталостных трещин в аналогичных местах обшивки крыла ВС, хотя возникновение и распространение трещин до существенных размеров не было опасным.  [c.47]


В настоящее время в гражданской авиации (ГА) освоены и применяются следующие методы НК элементов конструкций в эксплуатации  [c.67]

Воздушные суда гражданской авиации в процессе каждого полета испытывают не только изменяющиеся по частотному составу нагрузки. Длительное статическое нагружение элементов конструкции ВС с неизменным по уровню воздействием происходит на этапе крейсерского полета. Применительно к алюминиевым сплавам, которые воплощены в конструкции планера и крыльях ВС, длительная выдержка под нагрузкой имеет место в течение длительных этапов полета в спокойной атмосфере.  [c.354]

Авиация — одна из самых молодых и наиболее интенсивно развивающихся областей техники, сосредоточившая в себе многие характерные особенности современного научно-технического прогресса комплексное использование разностороннего инженерного опыта и теоретических исследований, быстрое совершенствование и смену конструкций различных типов и групп машинного оборудования, удовлетворение жестких и нередко противоречивых требований (например, к весу и прочности самолетов, к величинам их максимальной и посадочной скоростей) и пр.  [c.329]

Постройка двигателей М-2, М-5 и М-6, как и постройка первых учебных самолетов и самолетов-разведчиков Р-1, применительно к передовому опыту зарубежных стран были необходимыми. Обращение к иностранным образцам позволило снабдить наши ВВС и гражданскую авиацию достаточно совершенной материальной частью, подготовить кадры специалистов и организовать проведение планомерной разработки отечественных конструкций самолетов различных назначений. Но уже в этот начальный период признавалось, что базирование последующего развития отечественной авиационной техники на иностранных образцах самолетов и двигателей было бы принципиальной ошибкой, что такое базирование явится в дальнейшем серьезной причиной технического отставания нашей авиации и что оно допустимо лишь как вынужденная временная мера до укрепления отечественных специализированных научно-исследовательских и опытно-конструкторских учреждений и повышения общего промышленного потенциала страны.  [c.332]

Самолеты перечисленных типов полностью заменили к 1934—1935 гг. устаревшие и изношенные пассажирские самолеты иностранных образцов, которые еще в 1929 г. составляли 61% самолетного парка советской гражданской авиации. Широкое распространение получили тогда самолеты АИР-б, строившиеся в сухопутном, поплавковом и арктическом (полярном) вариантах они отличались простотой конструкции, имели удобные пассажирские кабины, обладали малой посадочной скоростью и высокой весовой отдачей (соотношением между полной нагрузкой и полетным весом машины), определившей значительную дальность полета. На поплавковом самолете этого типа были установлены первые зарегистрированные в Между-  [c.339]

Наряду с развитием и увеличением производства турбореактивных двигателей в первые послевоенные годы продолжалось совершенствование конструкций и сохранялось значительное по количеству производство поршневых авиационных двигателей. Особо мощные и экономичные многоцилиндровые поршневые двигатели оставались необходимыми для тяжелых самолетов дальнего и сверхдальнего действия, так как газотурбинные двигатели конца 40-х и начала 50-х годов не обладали достаточно высокими экономическими характеристиками. Поршневые двигатели устанавливались на самолетах легкомоторной и гражданской авиации, поскольку в эти годы еще не были развернуты работы по проектированию и постройке газотурбинных двигателей малой и средней мощности.  [c.371]

Наряду с необходимостью преодоления теплового барьера тогда же возникла настоятельная необходимость преодоления барьера надежности. Использование новых агрегатов и бортовых систем, введение бортовой электронной аппаратуры различного назначения — все это намного расширило технические возможности сверхзвуковой авиации, но вместе с тем существенно усложнило конструкции самолетов. Сложные многоэлементные конструкции оказывались менее надежными, чем значительно бодее простые конструкции, характерные для авиационной техники более ранних периодов.  [c.388]

Продолжая работы в области тяжелой реактивной авиации, коллектив Б. М. Мясищева провел значительные экспериментальные работы в специальной аэродинамической лаборатории, стендовые испытания бортовых систем и исследования моделей основных агрегатов, позволившие решать вопросы прочности и динамики конструкции с большой экономией сил и времени. Впервые в авиационной практике были решены проблемы сборки планера самолета из крупногабаритных прессованных панелей, резко сокращающих применение трудоемкого процесса клепки, герметизации больших объемов крыльев и фюзеляжа, использованных как топливные емкости, и применения переменного тока для основной бортовой электросети. Широкое применение автоматики позволило сократить экипаж самолета.  [c.389]

Последовательное совершенствование аэродинамических форм самолетов, улучшение конструкций реактивных двигателей и использование различных химических видов топлива открывают значительные возможности увеличения скоростей полета до нескольких километров в секунду на высотах, превышающих 25 км. Являясь общей для военной и гражданской авиации, тенденция возрастания скоростей приведет в будущем к объединению достижений авиационной и ракетно-космической техники, к разработке и эксплуатационному освоению авиационно-космических пилотируемых летательных аппаратов.  [c.404]

Обтекатели представляют собой второстепенные конструкции, так как они не воспринимают основные нагрузки, действующие на самолет, и не обеспечивают его конструкционной целостности. Примерами применения стеклопластиков могут служить также конструкции задних кромок, законцовок крыла и других обтекателей. На рис. 6—9 показаны различные агрегаты самолетов общего назначения и сельскохозяйственной авиации, изготовленные из стеклопластиков.  [c.47]

Эти материалы разработаны преимущественно для экспериментальных агрегатов военных самолетов, и их использование в гражданской авиации крайне ограничено. Тем не менее, невзирая на ранее отмеченное положение о стоимости и уровне технологии, затрудняющих широкое применение боро- и углепластиков, определенные экспериментальные работы в этом направлении проводятся. Круг их в настоящее время ограничен исследованием вспомогательных конструкций, которые будут установлены без особого риска на коммерческих самолетах для безопасности полетов. Такие испытания обеспечат получение сведений по влиянию длительного воздействия факторов окружающей среды, нагрузок, напряжений на свойства конструкций, что в свою очередь позволит накопить достоверные данные, необходимые для проектирования.  [c.50]


САП — перспективный материал для авиации, судостроения, химического ма1и 1ностроения и ядерной техники. Его можно использовать вместо нержавеющих сталей и титановых сплавов в ряде конструкций, работающих при 250—500°С, что позволяет значительно уменьшить массу конструкции,  [c.636]

Точный платиновый термометр сопротивления, который обсуждался в предшествующих разделах, является тонким и хрупким прибором. Механические сотрясения, даже не столь сильные, чтобы повредить кожух, вызывают напряжения в чувствительном элементе и увеличивают его сопротивление. В некоторых конструкциях термометров повторные сотрясения в осевом направлении могут привести к сжатию витков проволоки и в конечном счете к замыканию между витками. Помимо этих деликатных приборов, существуют также технические платиновые термометры сопротивления, конструкция которых выдерживает использование в нормальных производственных условиях. Выпускается множество самых различных типов технических термометров. Общим для всех них является то, что чувствительный элемент прочно закреплен, а часто просто заделан в стекло или керамику. Это Делает термометр исключительно прочным, но в то же время пбнижaJeт стабильность его сопротивления. Причин относительной нестабильности сопротивления по сравнению с точным лабораторным термометром две. Во-первых, чередование нагрева и охлаждения приводит к тому, что вследствие различия в коэффициенте теплового расщирения у платины и материала, охватывающего проволоку, чувствительный элемент испытывает напряжения, приводящие к изменению его сопротивления, и возникают остаточные деформации, которые также сказываются на величине сопротивления. Влияние механических напряжений можно снять отжигом при достаточно высокой температуре, однако остаточные деформации устранить, разумеется, невозможно. Во-вторых, при высоких температурах происходит изменение сопротивления вследствие диффузионного загрязнения платины окружающим материалом. Хотя воспроизводимость результатов, получаемых с помощью технических платиновых термометров сопротивления, уступает воспроизводимости прецизионных платиновых термометров сопротивления, она существенно лучще, чем у термопар, работающих в условиях технологического процесса. По этой причине многие миллионы платиновых термометров сопротивления используются в технике, промыщленности, авиации и т. д.  [c.221]

Применение заклепочных соединений в настоящее время ограничено конструкциями, выполненными из не-свариваемых материалов, либо работающими под воздействием ударных нагрузок, а также в мостостроении, авиации, краностроении и некоторых других отраслях промышлеп ности.  [c.176]

Клеевые соединения применяют в электропромышленности, авиации, мостостроительстве, станкостроении и т. д. Наибольшее распространение имеют соединения листового материала и тонкостенные клеевые конструкции. Их успешно используют для уплотнения и стопорения резьбовых соединений, при этом повышается надежность работы и отпадает необходимость в стопорных деталях (см. 3.11).  [c.273]

Тепловые и голографические методы контроля редко применяются для сварных конструкций и соединений. В основном область их применения — электронная промышленность, авиация, космическая техника (выявление не-пропаянных контактов проводников и дефектных узлов, нагревающихся при эксплуатации, сотовые панели самолетов, клеевые соединения и т. д.). Основное их преимущество — бесконтактность с объектом контроля. Недостаток— сложность методик и оборудования. С совершенствованием последних данные методы могут найти широкое применение в промышленности.  [c.220]

Клепаные соединения применяют для изделий из листового, полосового материала или профильного проката в конструкциях, работающих в условиях ударных или вибрационных нагрузок (авиация, водный транспорт, металлоконструкции мостов, подкрановых балок и т. д.) при небольших толщинах соединяемых деталей, для скрепления деталей из разных материалов, деталей из материалов, не допускающих нагрева или несвариваемых. В наше время клепаные соединения вытесняются более экономичными и технологичными сварными  [c.16]

Оценка влияния состояния поверхности образцов после их упрочнения на относительную живучесть материала была проведена применительно к титановым сплавам ВТЗ-1, ВТ-8, ВТ-22 и ОТ-4, которые вгароко используются в элементах конструкции ВС и ГТД гражданской авиации [106]. Были рассмотрены различные режимы нанесения на поверхность круглых образцов слоя хрома, который используют для снижения контактных повреждений для вращающихся деталей. Разработанная технология нанесения слоя хрома включает в себя первоначально этап подготовки поверхности путем упрочнения ее шариками, а далее осуществляется электрохимическое осаждение слоя хрома различной толщины за один или несколько этапов [107]. Были рассмотрены ситуации изменения режимов хромирования по трем параметрам размеру шариков, используемых для упрочнения поверхности, температуре раствора и величине тока в процессе нанесения хрома также рассмотрено одно-, трех- и шестикратное хромирование. Испытания на усталость выполнены при растяжении и изгибе с вращением корсетных, круглых образцов диаметром в рабочей зоне 8 мм в диапазоне уровней напряжения 330-850 МПа. Длительность роста трещины определяли фрак-тографически после достижения глубины около  [c.64]

Основным методом радиапионного контроля в гражданской авиации является рентгеновский (прошедшего излучения и теневой) радиографический метод. На основе рентгеновского излучения используется графический способ представления информации в виде фиксированного изображения на пленке. Учитывая методическую сложность, трудоемкость и низкую чувствительность метода, его применяют только в тех случаях, когда другими методами контроль осуществить нельзя. Выше уже был приведен пример ситуации с применением такого метода контроля к замкнутым полостям конструктивных элементов ВС. Помимо того, контроль проводят и с целью обнаружения влаги в сотовых конструкциях, например в самолетах Ил-86 и Ил-96.  [c.70]

Устойчивость указанного соотношения проверялась путем набора статистики по нескольким зонам изломов образцов из алюминиевых сплавов АК6, Д16Т, Д1Т и АВТ, которые наиболее широко применяются для изготовления элементов конструкций воздушных судов гражданской авиации. Все образцы были подвержены регулярному нагружению при разном уровне максимального напряжения цикла путем растяжения и изгиба прямоугольных образцов и изгиба с вращением круглых образцов. Некоторые образцы подвергали нагружению с постоянной деформацией.  [c.209]

Характерное для ядерного топлива сосредоточение огромных количеств энергии в тепловыделяющих элементах малого объема и веса, возможность получения высокой температуры нагрева рабочего тела, значительное увеличение радиуса действия транспортных средств и продолжительности работы их силовых (тяговых) установок без пополнения топливных запасов открывают большие перспективы использования атомной энергии в наземном транспорте, авиации и космонавтике. Однако в транспортных атомных энергетических установках этой группы пока еще необходимо применение тяжелых экранирующих оболочек весом 20—100 т для защиты обслуживающего персонала от ядерных излучений, поэтому создание соответствующих компактных конструкций сопряжено с проведением больших исследовательских р21б0Т.  [c.185]


Развитие самолетостроения в нашей стране на протяжении 30-х годов отличалось интенсивным возрастанием качественных показателей авиационной техники. Этот быстрый качественный рост особенно отмечался в области военной авиации самолеты-истребители и самолеты-бомбардировщики ближнего и дальнего действия постройки 1933—1936 гг. уже к 1939—1940 гг. были заменены скоростными боевыми самолетами новых конструкций, по летнотехническим характеристикам превосходившими самолеты военно-воздушных сил Германии и большинство типов военных самолетов Англии и США.  [c.348]

Осенью 1933 г. были проведены летные испытания маневренного истребителя-биплана И-15, сконструированного Н. Н. Поликарповым (рис. 94). Самолет этот имел смешанную металло-деревянную конструкцию и высотный двигатель М-25, развивал скорость до 360 кж/час и отличался наименьшим в истории истребительной авиации временем виража (табл. 20). 21 ноября 1935 г. летчик В. К. Коккинаки установил на нем неофициальный рекорд высоты полета, равный 14 575 м.  [c.350]

В 1936 г., учитывая опыт воздушных боев в Испании, Поликарпов предложил модифицированную конструкцию этого самолета (самолет И-15-бис), а в 1938 г. под его руководством был сконструирован истребитель-биплан И-153 с более мощным двигателем и с убирающимся шасси, снабженным пневматическим приводом. Развивавшие скорость до 443 клг/час и строившиеся крупными сериями, самолеты И-153 успешно применялись в боевых операциях против японской авиации в районе р. Халхин-Гоп (МНР). Годом позднее тем же конструктором был предложен опытный маневренный истребитель-биплан И-190 (см. табл. 20).  [c.350]

Огромное значение в ходе Великой Отечественной войны имела истребительная авиация, обеспечивавшая боевые действия наземных войск и Военно-Морского Флота. Значительную часть истребителей Советских Военно-Воздушных Сил составляли самолеты конструкции А. С. Яковлева, надежные в эксплуатации, простые в управлении на всех режима.х полета и обладавшие высокими боевыми качествами. Последовательное улучшение их аэродинамических свойств, увеличение скорости идальности полета, повышение вертикальной маневренности, усиление вооружения велосьОКБ А. С. Яковлева на основе боевого опыта.  [c.363]

Трудности решения сложнейших проблем освоения сверхзвуковых скоростей (изменения аэродинамической схемы самолетов, разработки конструкций мощных турбореактивных двигателей с осевыми компрессорами, конструирования новых автоматизированных систем управления и пр.), потребовавшие значительной затраты времени и сил больших коллективов иссле-дователей-аэродинамиков, конструкторов и технологов авиационного двигателе-и агрегатостроения, не могли не сказаться на темпах возрастания скоростей полета, несколько замедлившихся в мировой и отечественной авиации в начале 50-х годов (рис. 108). Но успехи, достигнутые в практическом решении этих проблем, определили начиная с 1953—1955 гг. новый подъем авиационной техники, равного которому еще никогда до того не отмечала ее история.  [c.376]

Первым отечественным серийным сверхзвуковым самолетом был одноместный истребитель МиГ-19 (рис. 112), сконструированный и начатый постройкой в 1952 — 1954 гг. Появление самолетов этого типа стало возможным после практического решения коренных проблем сверхзвуковой авиации, в частности — разработки новых типов турбореактивных двигателей с осевыми компрессорами. В фюзеляже самолета МиГ-19 устанавливались по два двигателя РД-9, сконструированных конструкторским бюро А. А. Мику-лина и обладавших рекордно низкими удельным весом и расходом топлива. Для уменьшения лобового сопротивления и для ограничения изменений продольной устойчивости при превышении скорости звука на самолете МиГ-19 была применена новая конструкция крыла со стреловидностью 55°, разработанная группой научных сотрудников ЦАГИ, возглавляемой В. В. Струминским и Г. С. Бюшгенсом (ныне член-корреспондент АН СССР), а для повышения маневренности при сверхзвуковых скоростях полета взамен руля высоты использовано более мощное средство продольного управления — поворотный стабилизатор.  [c.385]

Заполнитель может иметь самые разнообразные конструктивные формы, некоторые из которых показаны на рис. 15. Первые образцы трехслойных панелей, использовавшиеся в авиации, в частности в конструкции английского бомбардировщика времен второй мировой войны Ди Хевилленд Москито , имели заполнитель из бальзы, а несущие слои из фанеры. Иногда в качестве заполнителя используют пенополиуретан, имеющий хорошие демпфирующие и теплоизоляционные свойства. В настоящее время наиболее распространенным является сотовый заполнитель, который применяется, например, в пандалях серийных самолетов В-58, В-70, В-111, в лопастях вертолетов, в космическом корабле Аполлон. Фигурный заполнитель, показанный на рис. 15, в, был разработан с целью получения одинаковых свойств в двух ортогональных направлениях. Широко известен гофрированный заполнитель, применяющийся в картонных коробках. Новой формой заполнителя является так называемый гипар [79] (сокращение слов — гиперболический параболоид). Заполнители изготовляют из полимерных материалов, алюминия, титана, стали или из композиционных материалов.  [c.198]

Стеклопластики представляют собой наиболее раннюю и широко распространенную разновидность композиционных материалов, применяемых в авиации. Впервые они были использованы в 40-х годах при разработке авиационного радарного оборудования для военных самолетов, когда потребовались материалы, обеспечп-ваюш ие уменьшение лобового аэродинамического сопротивления в сочетании с низким радиочастотным рассеянием. В ранних конструкциях этого типа были использованы стеклянные ткани и полиэфирные связуюш ие. В современных обтекателях применяют стеклопластики на основе нетканых наполнителей и эпоксидных смол.  [c.47]

Характерный пример применения стеклопластиков в основной конструкции — легкий четырехместный самолет Уиндекер Игл с полетной массой 1540 кг. Управления гражданской авиации. Практически вся конструкция — фюзеляж, крыло и хвостовое оперение — выполнены из стеклопластика. Эта конструкция, обеспечившая минимум проблем, обычно возникающих при соединении в единое целое разнородных материалов, должна обладать отличными усталостными характеристиками наряду с уже продемонстрированными высокими летными качествами. Некоторые из этих качеств обусловлены сопутствующими эффектами применения композиционных материалов. R частности, высокая радиопрозрач-  [c.47]


Смотреть страницы где упоминается термин Конструкции авиации : [c.419]    [c.121]    [c.326]    [c.144]    [c.587]    [c.4]    [c.650]    [c.402]    [c.51]    [c.127]   
Справочник по композиционным материалам Книга 2 (1988) -- [ c.555 ]



ПОИСК



Авиация



© 2025 Mash-xxl.info Реклама на сайте