Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Моделирование охлаждения ГТУ

Рис. 5.1. Моделирование охлаждения пластины на АВМ Рис. 5.1. Моделирование охлаждения пластины на АВМ

Моделирование охлаждения пластины на АВМ. Моделирование некоторого явления или процесса (в частности, процесса теплопроводно-  [c.215]

Собственно понятие отжиг в оптимизацию пришло из термодинамики в связи с аналогией поиска экстремума и моделирования процесса отжига металлов. При охлаждении жидкого металла переход термодинамической системы из состояния с энергией в состояние с энергией происходит с вероятностью  [c.209]

Анализ термической нагруженности конструктивных элементов показЫ)Вает, что при моделировании в качестве базового можно принять термический цикл ( трапеция ), включающий нестационарную (нагрев—охлаждение) и стационарную (выдержка при температуре max) части и отражающий принципиальные особенности нагрева в реальных условиях, либо частный вариант цикла — пила , воспроизводящий чисто циклический нагрев. Включение выдержки при max в термический цикл (рис. 7, В/) важно в связи с тем, что на этом этапе представляется возможным воспроизвести реологические процессы (релаксация напряжений, ползучесть), протекающие в реальных условиях и существенно снижающие сопротивление термической усталости.  [c.14]

В случае выброса радиоактивных материалов из твэлов на их пути встает второй заслон, предотвращающий поступление радиоактивного материала в окружающую среду. Этим заслоном является корпус реактора. Типовой корпус реактора с кипящей водой спроектирован таким образом, чтобы выдерживать давление около 8,5 МПа при нормальном рабочем давлении 7 МПа. В реакторе с водой под давлением эти показатели составляют соответственно 1,70 и 1,5 МПа. Из этого видно, что корпуса реакторов PWR и BWR проектируются с учетом сравнительного небольшого превышения нормального эксплуатационного давления. Они смогут удержать радиоактивные материалы, выделяющиеся из поврежденного топливного элемента, в системе охлаждения. Однако более серьезная авария может привести к разрушению и этого заслона. Тогда наступает очередь последнего барьера—самого здания реактора, называемого защитной оболочкой. Это здание имеет характерную сферическую или цилиндрическую форму, являющуюся визитной карточкой АЭС в США. Они должны выдерживать превышения давления примерно 0,3—0,5 МПа. Эти показатели определены с помощью моделирования, при этом были приняты во внимание наиболее вероятные виды химических и ядерных реакций, которые могут иметь место при определенном, наиболее опасном виде аварии, которая может произойти на работающем ядерном реакто-  [c.186]

Д.ЛЯ деталей ГТД основной спецификой первого этапа оптимизации технологии по критериям прочности яв.ляется необходимость моделирования при испытаниях на усталость весьма высоких эксплуатационных температур опасной зоны. В результате необходимо достаточно глубокое охлаждение патрона вибростенда для крепления образцов или деталей. Охлаждение диктуется не только стремлением повысить долговечность патрона, но и особыми требованиями к стабильности жесткости заделки j при испытаниях на высоких звуковых и ультразвуковых частотах циклов с ростом частоты быстро возрастает влияние упругой податливости заделки на уровень напряжений в образце а при фиксированном значении измеряемых амплитуд колебаний вершины образца А, а также на резонансную частоту /.  [c.394]


Таким образом, при моделировании режима нагружения телескопического кольца следует принять изотермическое малоцикловое нагружение с наличием в характерном режиме одного неизотермического термомеханического цикла, обусловленного нагревом и охлаждением детали при выходе на стационарный режим и сбросе тепловой нагрузки.  [c.136]

Таким образом, главным обстоятельством, которое следует учитывать при проведении тепловых испытаний в вакуумных камерах с полным моделированием условий безграничного абсолютного вакуума, является обеспечение высокой степени черноты поверхности камеры. При невысокой температуре исследуемых изделий и отсутствии в рабочих условиях дополнительного излучения высокие требования к точности соблюдения тепловых режимов требуют охлаждения камеры сжиженными газами.  [c.519]

Гораздо более целесообразным, а иногда и единственно возможным, является опытный метод определения К, уже с успехом применявшийся на практике. Пользуясь им, нет необходимости интегрировать уравнение теплопроводности из всей теории нам понадобится только одна наша основная теорема ( 8 гл. 1) моделирование дает нам полное практическое решение задачи о регулярном охлаждении тела любой формы, происходящем в условиях совершенного контакта с окружающей средой, т. е. С->оо.  [c.95]

Приведены результаты исследований температурных полей, термических напряжений и гидравлических режимов в проточных частях и в системах охлаждения элементов паровых и газовых турбин, а также особенности методики моделирования этих процессов на моделях из электропроводной бумаги и на моделях-сетках с применением соответствующих нелинейных элементов и блоков электронного моделирования.  [c.2]

Метод электрического моделирования нашел применение во мно гих областях науки и техники, в том числе в теплофизике и турбостроении [105, 107, 110, 117, 139, 147, 194,241,254,272, 327 и др.]. Определение температурных полей в элементах паровых и газовых турбин, исследование влияния граничных условий и конструктивных факторов, выбор наиболее эффективной системы охлаждения, определение граничных условий — далеко не полный перечень задач, решаемых на электрических моделях.  [c.15]

Первоначальные сведения о распределении температуры в проставках, хвостовиках рабочих лопаток и периферийной части бочки ротора получены электрическим моделированием температурного поля единичной ступени на электролитических моделях лопатки с проставкой и бочки ротора. На моделях воспроизводилось пространственное температурное поле. Основные результаты исследования эффективности охлаждения ротора на модели единичной ступени приведены в работах [27, 28], где показано, что с достаточной точностью температура периферийной части бочки ротора в пределах ступени может быть определена на упрощенной модели полу-ограниченного тела с равномерно распределенными (соответственно шагу лопаток) охлаждающими каналами. Заглубление каналов при этом должно соответствовать расстоянию от корневого сечения лопаток до оси каналов в лопатках, а к полуограниченного тела должен быть равен X материала лопатки.  [c.183]

Использование упрощенной методики моделирования позволило выполнить широкую программу исследований по выбору наиболее эффективных форм и размеров каналов при одинаковых расходах пара на организацию охлаждения [27].  [c.183]

Результат моделирования интересен также в том отношении, что позволяет ответить на вопрос, насколько представительны измерения температуры ротора на внутренней расточке. Из рис. 82, а следует, что разность температур между периферийной частью барабана и внутренней расточкой по всей длине ротора примерно одинакова и составляет 3—4 град. При равномерном солевом заносе всех каналов системы охлаждения и повышении в связи с этим температурного уровня барабана ротора, очевидно, система контроля температуры по внутренней расточке окажется достаточно эффективной.  [c.187]

Система охлаждения корпуса внутреннего цилиндра незначительно отличается от системы охлаждения ротора, и при исследовании теплового состояния цилиндра можно применить те же приемы, что и при моделировании температурного поля ротора.  [c.187]


Большое внимание также было уделено правильному заданию температуры охлаждающего воздуха на отдельных участках тракта охлаждения. Оказалось, что подогрев охлаждающего воздуха в связи с малым его расходом оказывает существенное влияние на температурное поле ротора. Поэтому методикой моделирования пре-  [c.190]

НОЙ постановке, моделирование проводилось без учета зависимости X (Т). Это тем более правомерно в условиях отработки оптимальной системы охлаждения, когда рациональное распределение воздуха по охлаждающим каналам приводит к выравниванию температурного поля лопатки.  [c.197]

Моделирование системы охлаждения ГТУ  [c.232]

Моделирование воздушной системы охлаждения газотурбинной установки является задачей более простой, чем исследование распределения расходов пара в паровой турбине, так как в этом  [c.232]

Затем после продувки модели трубного пучка вспомогательный вентилятор отключается, окна а я б закрываются и в трубный пучок направляется основной поток нагретого воздуха. Байпас в этот момент отключается с помощью задвижки 3. Обработка опытных данных производится в том же порядке, как и в случае применения метода локального моделирования. Средний коэффициент теплоотдачи и темп охлаждения определяются из уравнений, приведенных выше. Максимальное расхождение в значениях темпа охлаждения по полному и локальному моделированию не превышает 3%. Подогрев воздуха составлял 60—70° С. Разности температур перед началом опыта между потоком воздуха и трубными пучками применялись равными 7—10°С. Опыты проводились в условиях нагревания трубного пучка ъ потоке газа при Re < 24 ООО.  [c.201]

Ввиду того, что моделирование процесса охлаждения проката при наличии вибрации представляет большую трудность, дальнейшие испытания проводились непосредственно на стане печной сварки труб в г. Челябинске. Промышленные испытания проводились при скоростях перемещения от 1,5 до 3 м сек. Для испытаний использовались спрейеры душевого типа с внутренним диаметром 100—ПО—150 мм. В процессе работы на стане охлаждались трубы от /s" до 2". Давление воды в процессе испытаний устанавливалось в пределах от 0,2 до 1,2 ати. Значительного изменения величины а/Ф в зависимости от давлений не наблюдалось, поэтому эта величина принималась средней и зависимой только от расстояния между отверстиями и охлаждаемой трубой.  [c.586]

При моделировании полиморфных и фазовых превращений в металлах предполагалось, что при переходе к новому структурному состоянию изменяется общая энергия системы, что связано с изменением энергии межатомной связи, параметра решетки, координационного числа и т. д. Эта избыточная энергия АЕ при малых скоростях охлаждения выделяется в окружающую среду в виде теплового эффекта превращения а при высоких - рассеивается в металле в виде дополнительных элементов структуры системы Поскольку любое изменение структуры системы приводит к изменению напряжений в системе на величину  [c.189]

Рис. 56. Моделирование охлаждения слитка массой 88 т стали 90ХФ на выдвинутой подине печи (а) и его ускоренного нагрева (б) Рис. 56. Моделирование охлаждения слитка массой 88 т стали 90ХФ на выдвинутой подине печи (а) и его ускоренного нагрева (б)
Моделирование охлаждения с помощью пакетов. Оценка прокаливае.мости стали производится по виду изломов и ударной вязкости образцов в окончательно тер- щчески обработанном высокоотпущенном состоянии в условиях, исключающих проявление отпускной хрупкости.  [c.50]

Возможность эффективной тепловой зашиты корпусных элементов от больших тепловых потоков успешно используется и при создании экспериментальных СВЧ плазмотронов [64]. Схемы СВЧ плазмотронов с предполагаемыми картинами течений при прямоточно-вихревой и возвратно-вихревой стабилизации плазмы показаны на рис. 7.30, а на рис. 7.31 показана зависимость мощности плазменного СВЧ излучения поглощаемого разрядом, и тепловой мощности fV , вьшеляюшейся в контуре охлаждения плазмотрона. Результаты опытов приведены в виде зависимости доли тепловых потерь WJW от удельного вклада энергии в разряд У = WJG, где G — расход плазмообразуюшего газа — азота. Результаты численного моделирования показаны на рис. 7.32,а — для традиционной прямоточно вихревой стабилизации и на рис. 7.32,6 — для случая с возвратно-вихревой стабилизацией. В первом случае рабочее тело — плазмообразующий газ — азот в виде закрученного потока подается в разрядную камеру, а во втором случае он подается в дополнительную вихревую камеру со скоростями 100 м/с ((7= 1 г/с) и 225 м/с ((7= 1,5 г/с), соответственно. По мнению автора работы [64] возвратный вихрь сжимает зону нагрева, предохраняя стенки камеры плазмотрона от перегрева. Основная часть газа проходит через разрядную зону, а размер зоны рециркуляции незначителен. В традиционной схеме (см. рис. 7.32,а) входящий газ смешивается с циркулирующим потоком плазмы и основная часть газа проходит мимо разряда вдоль стенок кварцевой трубки. Судя по приведенным модельным расчетам, схема с возвратно-вихревой стабилизацией позволяет снизить максимально достижимую температуру нагрева корпусных элементов примерно в 2,5 раза. Наиболее нагретая часть область диафрагмы, непосредственно примыкающая к отверстию имеет температуру 1400 К. Таким образом, использование возвратно-вихревой стабилизации плазмы позволяет изготовить СВЧ плазмотрон неохлаж-даемым из кварцевого стекла. Дальнейшее моделирование течения  [c.356]


Математическая теория ЭМП исследует обобщенные модели, заменяющие собой реальные устройства. Необходимость введения обобщенных моделей обусловлена большим разнообразием и сложностью изучения ЭМП. Многообразие и сложность присущи не только конструктивным формам и технологии прЪизводства, но и физическим процессам ЭМП. Основным рабочим процессом в ЭМП является электромеханическое преобразование энерг ии. Однако основной процесс неизбежно сопровождается такими процессами, как выделение теплоты и нагревание, естественное или принудительное охлаждение, механические воздействия на вращающийся ротор и др. Эти процессы не являются определяющими с позиций целевого (функционального) назначения ЭМП, но вызывают значительные трудности при математическом моделировании.  [c.55]

Обработка опытных данных производится в том же порядке, как и в случае применения метода локального моделирования. Средний коэффициент теплоотдачи, и темп охлалсдения о пределяются из уравнений, приведенных выше. Максимальное расхождение значений темпа охлаждения, полученных методами полного и локального моделирования, не лревьилает 37о- Подогрев воздуха в опытах составлял 60—70 С. Разности температур потока воздуха и трубных пучков перед началом опыта составляли 7—10° С. Опыты проводились в условиях нагревания трубного пучка и потоке газа при Re 24 000.  [c.264]

Основные закономерности регулярного теплового режима были подробно исследованы Г. М. Кондратьевым [40], который определил основные связи, существующие между темпом охлаждения т, с одной стороны, и физическими свойствами тела, его формой, размерами и условиями охлаждения — с другой. Это позволило разработать методы приближенного расчета нестационарных температурных полей, методы моделирования нестационарных процессов в сложных объектах, дать оценки неравномерности температурных полей в различных условиях и т. д. На основе теории регулярного режима были предложены и получили широкое распространение а практике новые методы определения теплофизических свойств веществ а, X, с, термических сопротивлений R, степени черноты тел е, коэ4х ициентов теплоотдачи а. Преимуществом таких методов является простота техники эксперимента, высокая точность получаемых результатов и малая затрата времени на проведение эксперимента.  [c.243]

Еще не было ни одного случая опробирования по полной схеме системы аварийного охлаждения зоны на работающем энергетическом реакторе. Этот факт является серьезным источником беспокойства для многих, кто испытывает сомнения по поводу ядерной энергетики. Вся имеющаяся в настоящее время информация по работе САОЗ в режиме аварии с потерей теплоносителя основана на математическом моделировании и экстраполяции существующей технологии и результатов нескольких испытаний по неполной схеме.  [c.185]

При разработке наукоемких радиоэлектронных изделий на базовых несущих конструкциях (БНК), тепловой режим которых обеспечивается при помощи термоэлектрических модулей с воздушным или водяным охлаждением, требуется конструировать и сопровождать конструкцию при производстве и эксплуатации с применением моделирования. Для учета условий изготовления и эксплуатации в данной работе предложено использовать принципы ALS-технологий. В основе предлагаемой методики сопровождения и поддержки наукоемких разработок лежит система ЛСОНИКА , содержащая средства, которые позволяют организовать информационную поддержку проектирования, изготовления и эксплуатации изделия. Предлагаемая методика содержит средства управления (планирования, контроль выполнения, принятие решений) проектированием и производством изделия средства моделирования электрических, тепловых, механических, аэродинамических и гидродинамических процессов средства обеспечения надежности и качества изделия диагностические средства. Выполнение эвристических процедур на различных этапах процесса проектирования в системе АСОНИКА поддерживаются экспертной системой. Получаемая информация от системы АСОНИКА помещается в электронный макет и используется методиками ALS-технологий для информационной поддержки изделия на всем жизненном цикле.  [c.70]

Более сложным для моделирования оказьшается процесс теплообмена в корпусе реактора при срабатывании системы аварийного охлаждения активной зоны (САОЗ). Этот процесс подробно описан вьпде в 3 гл. 3, носит сложный характер, поскольку внутренняя поверхность корпуса находится в начальный момент времени при температуре вьпие температуры насыщения, соответствующей падающему давлению теплоносителя, и охлаждающая жидкость (раствор борной кислоты) может находиться в двухфазном состоянии. А это в значительной мере затрудняет надлежащий выбор коэффициента теплообмена между корпусом реактора и закипающей жидкостью. Для исследования процесса теплообмена использовались следующие значения коэффициента теплообмена, соответствующие 176  [c.176]

Малая изученность брызгальных бассейнов предопределила и ограниченность методов математического моделирования, каждый из которых имеет эмпирическую основу. В связи с этим многие исследователи промышленных охладителей использовали известные методы оценки работы башенных градирен для брызгальных бассейнов. Один из наиболее распространенных подходов к решению задачи об оценке эффективности охлаждения воды в градирнях был сформулирован в 1925 г. Ф. Меркелем. Анализ уравнений, определяющих количество теплоты, переданной конвекцией и испарением, позволил Ф. Меркелю прийти к соотношению Gw wdtw = o(i —i)dF. Это уравнение может быть решено, и следовательно, может иметь практическое значение при четко выраженной зависимости между тепло- и массообменом, а также при известных температуре воды на входе в охладитель и выходе из него, температуре и влажности воздуха до и после охладителя при заданной производительности по воде и измеренном расходе  [c.21]

В отношении влияния числа Рейнольдса Хошизаки [381 установил, что влияние массообмена на уменьшение конвективного нагрева изменялось при низких Re. Он исследовал обтекание сферы потоком с числом Льюиса, равным единице, и показал, что увеличение конвективного нагрева за счет завихренности более четко выражено при наличии массообмена. В результате отношение конвективных потоков при наличии и без массообмена (ijj) может быть втрое больше расчетного значения, соответствующего течениям с более высокими Re. В настоящем исследовании ограничивались значениями S <С 1,2. Помимо вопроса о влиянии завихренности, возникает также вопрос о течении в пограничном слое, отклоняющемся от режима континуума, и о том, как это влияет на тепло- и массообмен. В этих условиях охлаждение потока за счет поглощения теила парами, образующимися при абляции, будет ослаблено уменьшением числа столкновений. Хоув и Шеффер [37] указали также, что для моделирования профилей концентраций вдуваемых компонентов число Рейнольдса должно быть удвоено. В силу высказанных выше замечаний, а также ввиду того, что в окрестности конической носовой части космических кораблей при их входе в атмосферу возникает течение с очень низкими Re, необходимо детальное исследование влияния числа Рейнольдса на связь между переносом массы и энергии.  [c.386]


Методические рекомендации по математическому моделированию процесса сушки и охлаждения зерна в установках плотного слоя. — М. ВИЭСХ. 1977.—48 с.  [c.209]

В настоящей главе излагаются методы теплогидравлического расчета, математического моделирования и оптимизации поверхностных конденсаторов с водяным охлаждением. Так же, как и при рассмотрении регенераторов, для оптимизации режимноконструктивных параметров конденсаторов в рамках общей задачи оптимизации ПТУ используется критерий минимума суммарной площади наружных поверхностей труб трубного пучка л-  [c.150]

В данной главе рассматриваются вопросы математического моделирования и оптимизации параметров АЭС, использующих в качестве рабочего тела водяной пар (АЭС с водоохлаждаемыми реакторами) и тетраоксид азота (АЭС с реакторами па быстрых нейтронах с охлаждением активной зоны жидким металлом). Здесь же приведены примеры использования моделей для выбора параметров АЭС указанных типов.  [c.77]

Коздоба Л. А. Исследования влияния формы и схемы охлаждения ротора газовой турбины на его температурное поле методом электрического моделирования на интеграторе ЭГДА-б/53. Канд. дис. Одесса, 1958. 259 с.  [c.238]

Коздоба Л. А. и др. Методика электрического моделирования гидравлических режимов систем воздушного охлаждения газовых турбин с помощью серийных интеграторов.— Энергетическое машиностроение, 1967, № 4, с. 39—50.  [c.238]

Итак, завершая анализ влияния превращений на свойства сплавов, можно отметить, что предлагаемая методика дает возможность на основании анализа диаграмм состояния и химического состава сплава вести расчет изменения свойств металла во время его охлаждения и выдержки при некоторой температуре. Этим самым мы замкнули описание и моделирование формирования свойств материала в полном цикле его обработки, начиная от нагрева, включая операции пластической деформации, меж- и последеформационные паузы, охлаждение с различными скоростями.  [c.184]


Смотреть страницы где упоминается термин Моделирование охлаждения ГТУ : [c.176]    [c.225]    [c.108]    [c.147]    [c.384]    [c.185]    [c.232]    [c.233]    [c.617]    [c.98]    [c.243]   
Электрическое моделирование нелинейных задач технической теплофизики (1977) -- [ c.232 ]



ПОИСК



Моделирование системы охлаждения ГТУ

Приближенное моделирование нагрева и охлаждения кузнечных заготовок

Теоретические основы метода приближенного моделирования нагрева и охлаждения кузнечных заготовок



© 2025 Mash-xxl.info Реклама на сайте