Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Компрессоры лопаточные осевые

ОСЕВЫЕ КОМПРЕССОРЫ. ЛОПАТОЧНЫЙ АППАРАТ  [c.224]

Нерасчетные режимы работы компрессоров. Для осевого компрессора, как и для всякой лопаточной машины, принцип работы которой основан на взаимодействии с потоком газа подвижных и неподвижных лопаток определенного аэродинамического профиля, существует так называемый расчетный режим работы. На расчетном режиме обеспечивается безударное и безотрывное обтекание лопаток всех ступеней компрессора (рис. 5.18,6).  [c.250]


Расчет компрессора. Параметры окружающей среды и физические константы для воздуха приняты по данным теплового расчета (см гл. III, 8). Компрессор радиально-осевой с лопаточным диффузором, одноступенчатый.  [c.334]

С задачей обтекания прямолинейной решетки мы сталкиваемся в осевых компрессорах и турбинах при изучении течения через неподвижные и вращающиеся лопаточные венцы с цилиндрическими поверхностями тока. В этом случае элементарный венец, т. е. лопаточный венец, ограниченный двумя близкими поверхностями тока, можно превратить в прямолинейную решетку, развернув его на плоскости для того чтобы обтекание всех профилей было одинаковым (как в лопаточном венце), решетка должна состоять из бесконечного числа профилей.  [c.6]

С ус лен ников Л. А. О применении оптических. методов для изучения течения в лопаточных венцах осевого компрессора Ц Лопаточные машины и струйные аппараты, вып. 1.— М. Машиностроение, 1966.  [c.97]

Компрессорами называют машины, предназначенные для сжатия воздуха, а также других газов и паров. Широко применяемые в технике компрессоры делятся на лопаточные и объемные. В лопаточных компрессорах (центробежных и осевых) рабочее тело в результате вращения ротора разгоняется до значительных скоростей, а затем кинетическая энергия потока превращается в потенциальную энергию давления. При этом давление в вентиляторах возрастает до 0,01 МПа, в воздуходувных мащинах — до 0,3 МПа. В объемных компрессорах (поршневых и ротационных) газ сжимается за счет уменьшения замкнутого объема, в котором он находится.  [c.191]

По конструктивному оформлению различают несколько типов указанных компрессоров. Так, лопаточные компрессоры в зависимости от направления движения рабочего тела делятся на центробежные, осевые, диагональные и комбинированные. Объемные компрессоры в зависимости от характера движения рабочего органа делятся на поршневые (возвратно-поступательное движение) и ротационные (вращательное движение).  [c.216]

Рис. 7.6. Схема ступени осевого компрессора а — лопаточный аппарат Рис. 7.6. Схема <a href="/info/111307">ступени осевого компрессора</a> а — лопаточный аппарат

Русские ученые внесли существенный вклад в дело развития теории газотурбинных установок. Вихревая теория несущего крыла аэроплана, в частности теорема о подъемной силе, закон постоянства циркуляции по радиусу осевой лопаточной машины, разработанные Н. Е. Жуковским (воздушный винт НЕЖ), послужили в дальнейшем фундаментом, на котором создавалась теория профилирования лопаток осевых компрессоров и лопаток газовых турбин. Многоступенчатый осевой компрессор для сжатия воздуха был опубликован впервые в отечественной литературе К. Э. Циолковским в 1930 г.  [c.100]

Результаты изучения реальных ироцессов расширения и сжатия можно по существу назвать теорией осевых лопаточных машин (турбин и компрессоров) с бесконечно большим числом ступеней. Спрашивается, можно ли с достаточной уверенностью наметить по данным такой теории конструктивные формы и габаритные размеры действительных машин, в которых процессы будут совершаться в порядке последовательно идущих ступеней Как будет видно из дальнейшего, на поставленный вопрос следует дать положительный ответ.  [c.13]

У газовых турбин, так же как у паровых, выхлопные патрубки в большинстве случаев выполняются сварными из листового проката. Воздушные осевые компрессоры, составляюш,ие обязательную часть газотурбинных установок (см. описание схем фиг. 2), представляют собой лопаточную машину, в которой благодаря воздействию рабочих лопаток на поток воздуха, проходящий через проточную часть компрессора, давление воздуха увеличивается. Давление воздуха в двух последовательно включенных осевых компрессорах установки ГТ-25-700 повышается до 10 ата. В конструкции отдельных узлов осевых компрессоров, так же как и в конструкции газовых турбин, широко применяется сварка. Сварными могут быть выполнены роторы компрессоров, направляющ,ий аппарат, части корпуса.  [c.17]

Качественно иной принцип действия положен в основу лопаточных компрессоров, которые подразделяются на два типа — центробежные и осевые (или аксиальные).  [c.258]

В свою очередь объемные компрессоры делятся на поршневые и ротационные, а лопаточные компрессоры — на центробежные и осевые.  [c.175]

Рис, 1. Схемы турбомашин, л —осевая турбина /5 —осевой компрессор б — центробежный компрессор г — диагональная турбина —рабочая решетка 2—направляющая решетка 3 —спрямляющая решетка —лопаточный диффузор.  [c.10]

Одним из основных способов, используемых на практике создания осевых лопаточных машин (компрессоров и турбин), является способ постоянной циркуляции.  [c.46]

При рассмотрении ряда вопросов теории лопаточных машин и реактивных двигателей возникает необходимость определения сил и моментов сил, действующих на газовый поток со стороны обтекаемых тел, или обратная задача — определение сил воздействия движущегося газа на тела, находящиеся в потоке. Примером таких задач может служить нахождение окружных и осевых усилий, действующих на лопатки компрессоров и турбин, определение силы тяги, создаваемой двигателем и т. п.  [c.27]

Таким образом, даже при отсутствии за колесом спрямляющих поток лопаток, можно организовать торможение воздушного потока, выходящего с большой скоростью из колеса, направив его в пространство между двумя кольцевыми поверхностями (стенками). Поэтому участок между сечениями 2—2 и 2 —2 (см. рис. 2.4) получил название безлопаточный диффузор . (Можно показать, что в таком диффузоре возможен переход от сверхзвуковой скорости к дозвуковой без образования скачка уплотнения). Однако в без-лопаточном диффузоре уменьшение скорости происходит сравнительно медленно (примерно обратно пропорционально радиусу), что приводит к необходимости выполнять его с увеличенными диаметральными габаритными размерами и сопровождается большими потерями на трение воздуха о стенки. Для более эффективного торможения потока, выходящего из колеса, в центробежных ступенях (компрессорах) авиационных ГТД обычно применяют лопаточные диффузоры, работающие аналогично направляющим аппаратам осевых ступеней. В некоторых конструкциях для уменьшения габаритных размеров центробежной ступени канал диффузора выполняется криволинейным с частичным или полным поворотом потока в нем из радиального направления в осевое.  [c.47]


Рассмотрим при этих условиях течение воздуха в осевых зазорах между неподвижными и вращающимися лопаточными венцами компрессора. Выделим в потоке воздуха в пределах осевого зазора элементарный объем (рис. 2.15), ограниченный двумя бесконечно близкими друг к другу соосными цилиндрическими поверхностями,  [c.65]

Пусть характеристики первой, средней и последней ступеней компрессора соответствуют изображенным на рис. 4.22. Для простоты изложения будем пренебрегать влиянием окружной скорости на эти характеристики и возможностью запирания отдельных лопаточных венцов. Пусть далее точки р на этих кривых соответствуют условиям работы всех ступеней на расчетном режиме работы компрессора. Бели уменьшить частоту вращения, то степень повышения давления в каждой ступени также уменьшится. В результате увеличение плотности воздуха и соответственно снижение осевой скорости по тракту компрессора станет менее сильным, чем на расчетном режиме, и согласно (4.20) получим  [c.141]

Решетка профилей лопаток рабочего колеса турбины (рис. 5.8) аналогично решетке лопаточного венца осевого компрессора может быть охарактеризована  [c.195]

По принципу работы осевые компрессоры относятся к так называемому классу лопаточных машин, так как их рабочими элементами, взаимодействующими с воздухом, являются вращающиеся и неподвижные специально спрофилированные лопатки.  [c.247]

Лопатки спрямляющих аппаратов устанавливаются за рабочими лопатками, составляющими с диском ротора рабочее колесо. Рабочее колесо и расположенный за ним лопаточный спрямляющий аппарат образуют ступень осевого компрессора.  [c.247]

Уравнение (10.1), полученное на основании теории Эйлера, выражает закон количества движения, поэтому оно верно для любого потока идеальной или вязкой жидкости. Справедливо оно и для всех типов лопаточных машин паровых и газовых турбин, детандеров, насосов (центробежных и осевых), центробежных и осевых компрессоров как идеальных, так и реальных. Уравнение (10.1) описывает обмен энергией между потоком газа и лопаточным аппаратом в любом направлении, поэтому, используя его, можно анализировать свойства и характеристики ТК и производить их пересчет при изменяющихся условиях, что очень важно для правильного выбора и эксплуатации ТК-  [c.199]

Важной характеристикой осевого компрессора является граница помпа-жа, связанная с явлением помпажа. В процессе работы осевого компрессора возникают возмущения, вызываемые изменениями как частоты вращения, так и сопротивления сети — газовой турбины. Они могут вывести систему компрессор — ГТ из равновесия. Важным показателем этой системы является аккумулирующая способность сети, определяемая возможностью накопления некоего избыточного рабочего тела по сравнению с его установившимся течением. На этот процесс может повлиять также изменение плотности воздуха. В такой системе могут развиваться режимы с вращающимся срывом потока, нарушающие устойчивость течения и приводящие к пульсациям. Эти явления возникают, в частности, при снижении расхода рабочего тела и уменьшении частоты вращения. При дальнейшем снижении расхода в отдельных зонах проточной части компрессора создается устойчивый вращающийся срыв потока, который сильно замедляется, и может иметь место обратное течение ( .j < 0). Развитие этого вращающегося срыва при дальнейшем уменьшении расхода в конце концов приводит к полной потере устойчивости потока и появлению колебаний давления в системе компрессор — ГТ, т.е. возникает помпаж. Это явление характеризуется нарастающим гулом в работающем компрессоре, хлопками в заборном устройстве и выбросом воздуха, появлением вибраций лопаточного аппарата вплоть до его разрушения. Одновременно резко падает КПД компрессора, поэтому явление помпажа недопустимо даже кратковременно  [c.50]

В ГТУ этого типа использован 18-ступенчатый осевой компрессор. К компрессору серии F добавлена нулевая ступень, что позволило увеличить расход воздуха с 404 до 498 кг/с, а степень повышения давления с 12,3 до 14,2. Регулирующий ВНА изготовлен, как и лопаточный аппарат компрессора, из коррозионно-стойкой нержавеющей стали повышенной прочности.  [c.248]

Теоретические основы проводимых работ Борис Сергеевич излагает в своих лекциях и докладах. В работах по лопаточным машинам он дал оригинальный метод гидравлического расчета авиационных центробежных нагнетателей, ввел теорию подобия в расчет и характеристики центробежных и осевых нагнетателей, установил своеобразный признак начала помпажа в центробежных компрессорах. Следует также отметить распространение теоремы Н. Е. Жуковского о подъемной силе дужки в компрессорной решетке на случай обтекания решетки сжимаемой жидкостью (1944 г.).  [c.11]

Работы по лопаточным машинам позволили Борису Сергеевичу не только разрешить ряд отдельных вопросов теории и расчета, но и создать самостоятельную теорию расчета центробежных и осевых компрессоров, успешно применяемую им в практической деятельности по созданию как агрегатов наддува, так и осевых компрессоров для реактивных двигателей.  [c.11]

В лопаточных компрессорах сжатие газа происходит с помощью вращающегося рабочего колеса. Лопаточные компрессоры в зависимости от направления потока по отношению к оси колеса делятся на центробежные и осевые.  [c.240]

Компрессорами называются нагнетатели, предназначенные для подачи газов при больших давлениях (более 1 500 кг/м ), в результате чего газ существенно сжимается и нагревается. Компрессоры, работающие при давлениях не более 30 000 кг м =Ъ ат, часто называют воздуходувками. Компрессоры по принципу действия могут быть объемными, лопаточными и струйными. Из объемных наибольшее распространение имеют поршневые, а из лопаточных — центробежные компрессоры. Применяются также зубчатые, пластинчатые и осевые компрессоры.  [c.125]


Лопаточные компрессоры (осевые и центробежные) называют турбокомпрессорами. Компрессоры, приспособленные для создания больших разрежений, называют вакуум-на-с о с а м и.  [c.125]

Остов турбокомпрессора ТК-18 состоит из трех корпусов газоприемного, выхлопного и компрессорного, соединенных между собой фланцами. Все корпуса отлиты из алюминиевого сплава, причем первые два имеют водяные рубашки, через которые циркулирует вода из системы охлаждения двигателя. Газоприемиый корпус имеет два входных канала с осевым направлением. Сопловой аппарат крепится к газоприемному корпусу. В центральной части выхлоиного корпуса закреплен стальной стакан, в котором вращается на плавающих бронзовых втулках ротор турбокомпрессора. Колесо турбины отлито из жаропрочной стали и крепится к валу сваркой. Колесо компрессора, отлитое из алюминиевого сплава, соединяется с валом посредством шлицев и затянуто гайкой. Уплотнении ротора — контактные, кольцевые. Диффузор компрессора — лопаточный (фиг. 194, 195).  [c.239]

Определение профильного сопротивления путем расчета, поясненное в предыдущем параграфе для отдельного крылового профиля, распространено Г. Шлихтингом и Н. Шольцем [30], [34] случай течения через крыловые или лопаточные решетки. Если в турбине или в компрессоре с осевым протеканием через направляющее и рабочее колёса провести цилиндрическое сечение с осью, совпадающей с осями обоих колес, и затем развернуть это сечение в плоскость, то в последней получится так называемая плоская решетка из отдельных профилей крыльев или лопаток. Параметрами этой решетки являются относительный шаг ///, т. е. отношение шага 1 решетки к хорде профиля, и угол установки Руст профиля (рис. 25.7). При потенциальном обтекании отдельного крыла давление далеко впереди и далеко позади крыла одинаково. При потенциальном же течении через решетку такое равенство давлений в общем случае нарушается, а именно позади решетки возникает понижение давления, если решетка преобразует давление в скорость (турбинная решетка), и, наоборот, возникает повышение давления, если решетка преобразует скорость в давление (насосная, или компрессорная, решетка). Совокупное действие такого понижения (или повышения)  [c.686]

Кроме осевого компрессора лопаточного типа (фпг. 9-7, а), применяются в турбореактивных двигателях и центробежные компрессоры (фиг. 9-7,6). Введение центробежного компрессора видоизменяет конструкцию двигателя в целом. Уднако принцип действия ТРД остается таким же, как и для двигателя с осевым компрессором лопаточного типа.  [c.269]

Лопаточные компрессоры изготовляют в виде центробежных или осевых. Для наддува в большинстве случаев применяют центробежные нагнетатели. На рис. 72 приредена схема установки центробел ного нагнетателя с приводом от газовой турбины. Такая установка называется турбокомпрессором. Продукты сгорания из цилиндров двигателя 1 подводятся к ресиверу Л, а из него на рабочие лопатки 4 газовой турбины. На одном валу с газовой турбиной установлен центробежный нагнетатель 5. Регулирование частоты вращения вала газовой турбины осуществляется путем отвода части продуктов сгорания в атмосферу через регулирующую заслонку 2.  [c.166]

Надежность осевого компрессора определяется главным образом лопаточным аппаратом, нагрузку которого обеспечивают динамические усилия со стороны потока циклового воздуха и центробежные силы от собственного веса. Из-за низкой вибронастройки в наибольшей степени динамические усилия опасны для первых ступеней рабочих лопаток. При частоте вращения ротора ОК 2800—4200 об/мин наблюдается резонансный режим рабочих лопаток первых ступеней, поэтому допустимое время работы ГПА должно быть не более 2 мин.  [c.86]

Учитывая особенности предлагаемой нами методики проектирования проточной части турбин и компрессоров, необходимо несколько глубже разобраться в ее сущности. Определение проточных площадей в лопаточных венцах по осевым составляющим скоростей течения обеспечивает пропускную способность венцов. При этом следует выдержать принятые в начале расчетов внутренние к. п. д. ступеней процессов расширения и сжатия. Подбор облопатывания потом ведется тоже на основе принятых значений осевых составляющих скоростей потока и на основе принятых значений к. п. д. ступеней. Так же определяются и значения степеней реакции в ступенях машины.  [c.21]

Применение поглотителей без ингибиторов, по данным длительной эксплуатации энергопоездов [Л. 84], предохраняет внутренние полости от коррозии, однако требуется 1 раз в 3 мес. заменять влагопоглотитель новым. Применение ингибиторов обеспечивает большую надежность предохранения от коррозии и не требует расконсервации в течение длительного срока. По данным испытаний на газопроводе Бухара — Урал при условии хранения турбоблоков ГТ 700-5 на открытом воздухе применение ингибитора НДА обеспечило надежное хранение внутренних полостей в течение 10 мес. На рис. 29 показана поверхность лопаточного аппарата ротора осевого компрессора ГТ 700-5 после 10 мес. хране-  [c.67]

Осевые компрессоры. Работы по стационарным осевым компрессорам в Советском Союзе были начаты в 1947 г. К этому времени авиационной промышленностью уже были созданы первые отечественные осевые компрессоры для турбореактивных двигателей. Однако в стационарном компрессоростроении этот опыт мог быть использован лишь частично, поскольку требования к турбокомпрессорам газотурбинного двигателя существенно отличаются от требований к компрессорам стационарных ГТУ. Так, в стационарных машинах условия работы лопаточных аппаратов осевых компрессоров являются менее напряженными, вместе с тем требуется значительно больший моторесурс и более высокие значения к. п. д. на расчетном режиме. Следует также иметь в виду, что производство стационарных осевых компрессоров является мелкосерийным. Поэтому в стационарном компрессоростроении более широко используется унификация лопаточного аппарата.  [c.61]

Осевой компрессор имеет несколько рядов лопаток, насаженных на один общий вращающийся барабан или (чаще) а ряд соеди- ненных между собой дисков, которые образуют ротор компрессора. Один ряд лопаток ротора (вращающийся лопаточный венец) называется рабочим колесом. Другой основной частью компрессора является статор, состоящий из нескольких рядов лопаток (лопаточных венцов), закрепленных в корпусе. Назначением лопаток статора является 1) направление проходящего через них воздушного потока под необходимым углом на лопатки расположенного за ними рабочего колеса 2) спрямление потока, закрученного впереди стоящим колесом, с одновременным преобразованием части кинетической энергии закрученного потока, в работу повышения давления воздуха. Соответственно этому один ряд лопаток статора называется направляющим или спрямляющим аппаратом. Венцы лопаток статора, расположенные в многоступенчатых компрессорах между соседними рабочими колесами, выполняют обычно обе эти функции одновременно. Поэтому оба термина являются, по существу, сино-  [c.38]

На рис. 4.40 показано типичное изменение характеристики я положения рабочей кривой многоступенчатого осевого компрессора при открытии клапана (ленты) перепуска. По горизонтали здесь отложен приведенный расход воздуха на входе в компрессор. Как видно, при пониженных значениях Пщ, открытие перепуска приводит к смещению напорных кривых вправо и вверх, т. е. к увеличению Gb.hp и Як. Но при более высоких значениях гёщ, расход возрастает в значительно меньшей степени (из-за приближения к режимам запирания в лопаточных венцах первых ступеней), а Яктах падает.  [c.168]


Для преобразования динамического давления за выходным лопаточным венцом осевых турбомашин (вентиляторов, компрессоров, турбин) широко используются кольцевые диффузоры, которые вьшолняют как с прямолинейными образующими (осекольцевой диффузор, рис. 5-26), так и с криволинейными образующими (радиально-кольцевой диффузор, диаграмма 5-20) или комбинированными (осерадиально-кольцевой диффузор, диаграмма 5-20).  [c.204]

Коэффициент полного сопротивления осекольцевого диффузора с прямолинейными образующими (см. пп. 82, 83 пятого раздела), расположенного за лопаточным венцом осевых турбомашин (вентиляторов, компрессоров, турбин), при свободном выходе движущейся среды в большой объем определяется по экспериментальным данным, полученным С. А. Довжцком и В. И. Морозовым [11-12] и приведенным на диаграмме 11-9 в. > иле зависимости от угла при различных 2 для диффузоров с Jq = 0,688 и равным 0,5 и 1,0.  [c.503]

На рис. iO.8 показана линия начала открытия противопом-пажного клапана. Такие линии должны показываться на характеристиках всех ТК. Для сработки противопомпажной системы требуется известное время, поэтому если противопомпажная система будет настроена на действительную границу помпажа, то при очень быстром снижении расхода газа через ТК система сработать не успевает. Возникновение помпажа, особенно у осевых компрессоров, может привести к серьезным авариям (поломка лопаточного аппарата и др.).  [c.225]

Конструктивная схема осевого компрессора ГТУ представлена на рис. 2.2. В ней можно выделить основные элементы, которые обеспечивают работу компрессора (см. также рис. 1.2, а, е). Воздух через комплексное воздухоочистительное и шумоподавляющее устройство (КВОУ) забирается из атмосферы и поступает во входной патрубок I (сечение НК—НК) и кольцевой конфузор 2, а покидает компрессор через спрямляющий аппарат 3, диффузор 7 и выходной патрубок б (сечение КК—КК). Основное назначение этих неподвижных элементов — подвести воздух к рабочим ступеням компрессора, а затем отвести его, обеспечив минимальные потери, равномерное поле скоростей и давлений воздуха. В современных осевых компрессорах путь воздуха весьма сложен. После конфузора установлен входной направляющий аппарат (ВНА) 5, закручивающий воздух в сторону вращения ротора, и используемый для изменения расхода воздуха и воздействия на режим работы всей ГТУ. Далее расположены рабочие ступени компрессора I, II,..., z, каждая из которых состоит из рабочего лопаточного аппарата — рабочего колеса (РК) и следующего за ним неподвижного направляющего аппарата (НА). В некоторых конструкциях осевых компрессоров первые ступени име-  [c.39]

Наиболее трудоемки и сложны обслуживание и ремонт ГТУ через 500 пусков (сезонные, как правило в летний период). На выполнение такого обслуживания составляется типовой сетевой график, в котором подробно расписана последовательность операций. Во время этого обслуживания производится полная разборка агрегата снимаются крышки цилиндров, вскрываются подшипники, вынимаются диафрагмы направляюших аппаратов компрессора и турбины, узлы камеры сгорания, ротор ГТУ и т.д. Заполняется формуляр положения узлов проточной части, подшипников, осевой выбег ротора, производится визуальный осмотр деталей и узлов, контроль состояния металла в наиболее напряженных местах методами неразрушаюшего контроля ультразвуковой диагностики (УЗД), магнитной дефектоскопии (МД), цветной дефектоскопии (ЦЦ). Полностью проверяется лопаточный аппарат турбины и компрессора. Производятся слив масла из маслобаков системы смазки и системы регулирования, очистка их от грязи и шлама. Практически полностью выполняется объем работ, соответствуюший обслуживанию через 100 пусков. По результатам осмотра и дефектоскопии узлов и деталей ГТУ производится их ремонт или замена. После окончания всех работ осуществляются сборка агрегата с заполнением необходимых формуляров, его подготовка к пусковым операциям и пуск.  [c.164]

Современные методы расчета осевого компрессора базируются на данных обтекания газом плоских решеток, в первом приближении моделирующих движение газа по поверхности тока в лопаточных венцах ступени осевого компрессора. Обширные материалы продувок таких решеток представлены в открывающих сборник двух статьях А. И. Бунимовича и А. А. Святогорова. Первая из них содержит результаты систематического экспериментального изучения аэродинамических характеристик плоских (двухмерных) диф-фузорных решеток осевого компрессора как при малых, так и при больших числах М набегающего дозвукового потока и при широком изменении параметров решетки и профиля вторая обобщает результаты этого исследования. В итоге обобщения данных продувок решеток авторами предложены методика расчета аэродинамических характеристик заданной компрессорной решетки и методика подбора оптимальной решетки, обеспечивающей требуемое отклонение потока.  [c.3]


Смотреть страницы где упоминается термин Компрессоры лопаточные осевые : [c.95]    [c.53]    [c.173]   
Техническая термодинамика Изд.3 (1979) -- [ c.258 ]



ПОИСК



КПД лопаточный

Компрессор осевой

Компрессорий

Компрессоры

Компрессоры лопаточные

Осевые компрессоры. Лопаточный аппарат



© 2025 Mash-xxl.info Реклама на сайте