Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Резание Физика

Соотношение между Р , Р и Р зависит от геометрических параметров инструмента, режима резания, физико-механических свойств обрабатываемого материала, изнашивания резца, условий обработки и приближенно составляет Р Ру Р =1 (0,5...0,3) (0,4...0,25). Для практических расчетов определяют лишь силу Р , а силы Р и Р берут в долях от нее.  [c.453]

Важнейшим технологическим условием механической обработки материалов на станках является режим резания. Характеристики режимов резания (Г, V, 8, I и др.) определяются обрабатываемостью данного конструкционного материала. Под термином обрабатываемость понимается комплекс характеристик, определяющих способность материалов ограничивать производительность и качество их обработки, например, величины износа и стойкости режущих инструментов, оптимальные значения геометрических параметров режущей части инструментов и режимов резания, физико-химические свойства обрабатываемого и инструментального материалов и др. Обычно при оценке обрабатываемости учитываются оптимальные скорости резания, соответствующие стойкости инструмента, при которой достигается минимальная стоимость обработки. На практике иногда обрабатываемость оценивается отношением допустимой скорости резания исследуемого материала к допустимой оптимальной скорости эталонного металла. Это отношение называется коэффициентом относительной обрабатываемости К.  [c.77]


Стойкость инструментов. Под стойкостью инструментов понимается время непрерывной работы его при постоянных режимах до затупления или до заданной величины износа. На стойкость инструмента оказывают влияние скорость резания, физико-механические свойства обрабатываемого материала и инструмента, глубина резания и подача, геометрические параметры режущей части инструмента, смазочно-охлаждающая жидкость и т. д.  [c.500]

За критерий величины износа обычно принимается допустимая величина к, изношенной площадки на задней поверхности инструмента. Интенсивность износа зависит от многих факторов режима резания, физико-механических свойств обрабатываемого материала, смазочно-охлаждающей жидкости и др. Наибольшее влияние на интенсивность износа оказывает скорость резания, меньшее — подача и особенно глубина резания. Так, при обработке заготовок из сталн средней твердости экспериментальным путем получена зависимость износа (в мм) по задней поверхности от режимов резания  [c.47]

Это положение подтверждается полученными нами данными, представленными на фиг. 8. Исследования показывают, что при температурах, имеющих место в процессе резания, физико-механические свойства минералокерамического сплава, как и других инструментальных режущих материалов, резко отличаются от свойств этих материалов в исходном состоянии.  [c.204]

При обработке деталей инструментом из быстрорежущих сталей силы резания превышают силы резания при обработке твердосплавным инструментом, и при их расчете необходимо учитывать влияние скорости резания. Затупление инструмента (его износ) также увеличивает силы резания. Влияние отдельных параметров на силы резания учитывается поправочными коэффициентами. К ним относятся йр, ky , йф, /е,,,, k% — учитывающие влияние скорости резания, физико-механических свойств обрабатываемого материала, углов ш, у и Я.  [c.65]

ГЛАВА I. ФИЗИКО-МЕХАНИЧЕСКИЕ ОСНОВЫ ОБРАБОТКИ МЕТАЛЛОВ РЕЗАНИЕМ  [c.253]

Упрочнение металла обработанной поверхности заготовки проявляется 13 повышении ее поверхностной твердости. Твердость металла обработанной поверхности после обработки резанием может увеличиться в 2 раза. Значение твердости может колебаться, так как значение пластической деформации и глубина ее зависят от физико-механических свойств металла обрабатываемой заготовки, геометрии режущего инструмента и режима резания.  [c.268]


Условно поверхностный слой обработанной заготовки можно разделить на три зоны (рис. 6.12, б) / — зона разрушенной структуры с измельченными зернами, резкими искажениями кристаллической решетки и большим количеством микротрещин ее следует обязательно удалять при каждой последующей обработке поверхности заготовки // — зона наклепанного металла III —основной металл, В зависимости от физико-механических свойств металла обрабатываемой заготовки и режима резания глубина наклепанного слоя составляет несколько миллиметров при черновой обработке и сотые и тысячные доли миллиметра при чистовой обработке. Пластичные металлы подвергаются большему упрочнению, чем твердые.  [c.268]

Под стойкостью инструмента Т понимают суммарное время (мин) его работы между переточками на определенном режиме резания. Стойкость токарных резцов, режущая часть которых изготовлена из разных инструментальных материалов, составляет 30— 90 мин. Стойкость инструмента зависит от физико-механических свойств материала инструмента и заготовки, режима резания, геометрии инструмента и условий обработки. Наибольшее влияние на стойкость оказывает скорость резания.  [c.272]

Вопрос износостойкости металлорежущего инструмента — один из основных в области металлообработки. Исследованию закономерностей его изнашивания, физике процессов, определяющих интенсивность износа, влиянию на износ различных факторов и в первую очередь режимов резания, выбору рациональной геометрии инструмента посвящена обширная литература [110]. В зоне резания протекают разнообразные процессы, такие как пластическая деформация поверхностного и срезаемого слоя, возникновение высокотемпературных зон, адгезионные процессы (образование нароста), фазовые превращения и др.  [c.316]

Геометрия неровностей тесно связана с физико-механическими процессами разрушения металла при обработке резанием. Так, шероховатость поверхности при обработке хрупких металлов представляется в виде треугольных углублений, отвечающих форме вырванных зерен в вязких металлах при больших скоростях резания сильно деформированные неровности имеют форму чешуек.  [c.47]

В некоторых случаях в зоне интенсивной деформации происходит высокий местный нагрев до температур, превышающих критические значения. Такой нагрев с последующим быстрым охлаждением может сопровождаться структурными превращениями в поверхностном слое. Подобные физико-химические превращения в поверхностном слое при резании наблюдались во многих работах. Так, фазовые превращения в поверхностном слое наблюдались при шлифовании закаленных сталей.  [c.113]

Технологическая вариантность характеризуется тем, что один и тот же технологический эффект обработки может достигаться в результате разных технологических процессов, отличающихся своей физико-механической сущностью. Например, изготовление зубьев зубчатых колес может осуществляться не только резанием, но и ковкой, штамповкой, литьем и т. п.  [c.20]

Приведем для примера металлорежущий токарный станок. Осуществляемый на нем технологический процесс состоит в том, что резец своим давлением снимает с вращающегося изделия слой металла в виде стружки, чтобы придать изделию форму и размеры заданного тела вращения. Количество механической работы, затрачиваемой на снятие стружки, вполне определяется процессом резания, который представляет собой сложный физико-механический процесс. При резании происходит, во-первых, пластическая деформация металла в сходящей стружке и в поверхностных слоях изделия и, во-вторых, трение между поверхностью резца и поверхностью скользящей по нему стружки.  [c.28]

Непосредственная зависимость ошибки регулировки от размера инструмента не единственная форма связи такого рода. Например, ту же заготовку винта иногда изготовляют на токарном автомате (с накаткой резьбы на другом станке), и тогда уровень настройки зависит не от размера, а от положения инструмента — и то лишь при прочих равных условиях. К числу прочих, далеко не всегда равных условий, от которых может зависеть математическое ожидание диаметра заготовки винта при обработке на токарном автомате, относятся, например, радиальная составляющая усилия резания, которая в свою очередь зависит от геометрии резца, припуска, физико-механических свойств прутка, и жесткость системы станок — приспособление — инструмент — деталь, температура системы и пр. На операции металлопокрытия ошибка регулировки (отклонение математического ожидания толщины нанесенного слоя) зависит от концентрации раствора, силы тока, длительности процесса. Бывают операции с многочисленными техническими факторами ошибки регулировки и очень сложной схемой их взаимодействия (термообработка, шлифование применительно к такому признаку качества как поверхностная твердость и пр.).  [c.41]


Автоматические станочные линии выполняют операции, необходимые для полного изготовления сложных и трудоемких деталей черновую и чистовую обработку поверхностей резанием, окончательную (отделочную) обработку наиболее ответственных поверхностей, проверку точности размеров и формы, а также параметров шероховатости поверхностей, проверку герметичности, физико-механических свойств, термическую обработку, подгонку по массе, балансировку, сборку, мойку, консервацию и упаковку. Вхе более широко применяются автоматические системы, включающие машины для получения заготовок, многопозиционные станки с участками станочных линий сблокированного типа, сборочное оборудование, контрольные автоматы и др.  [c.7]

Эксплуатационные свойства деталей, обработанных резанием и другими методами, зависят от взаимодействия обрабатываемого материала и режущего элемента инструмента, материала резца, физико-механических и физико-химических свойств обрабатываемых материалов, вибраций режущего инструмента относительно обрабатываемой поверхности [44, 93].  [c.369]

Перерабатывают винипласты выдавливанием, штамповкой, гибкой, обработкой резанием, сваркой, пайкой и склеиванием с деревом, металлом и бетоном. Физико-механические свойства винипластов в состоянии по-  [c.157]

Текстолит поделочный (ГОСТ 5—52) выпускают марок ПТК, ПТ ПТ-1, отличающихся физико-механическими свойствами (табл. 33), в виде листов и плит. Применяют для изготовления различных деталей машин, в том числе и зубчатых колес, методом холодной обработки резанием или штамповки с предварительным разогревом. Толщина листов и плит от 0,5 до 70 мм. Длина и ширина устанавливаются по соглашению с заказчиком.  [c.175]

Рассматривая данные таблицы, не обнаруживается определенная закономерная связь обрабатываемости с физико-механическими свойствами сталей и сплавов. Однако наблюдается резкое снижение скорости резания  [c.329]

Изучению высокопрочных аустенитных сталей посвящены исследования А. И. Антонова, показавшего связь структуры металла с нестабильностью его технологических свойств. Физико-механические свойства металлов и вид их изменения при каком-либо деформировании предрешают их поведение в процессе резания.  [c.345]

Таким образом при помощи радиоактивных изотопов удается исследовать причины износа инструмента, следить за физико-химическими явлениями, происходящими при резании, и выяснять характер взаимодействия инструментальных материалов с обрабатываемым металлом. Все это создает возможность правильно подбирать режимы резания при обработке различных материалов. Проведенные в ряде институтов исследования показывают, что таким способом можно быстро и точно устанавливать оптимальные режимы обработки резанием разных материалов различными инструментами и находить диапазон скоростей резания, который дает наименьшую интенсивность изнашивания резца.  [c.5]

У1 следует умножать величины статической податливости сос, на коэффициент к. Упругие деформации нежестких динамических систем вызывают погрешности обработки. При различных видах обработки величины податливости и силы резания непостоянны. Коэффициент к также является переменной величиной, зависящей от параметров режима резания, физико-механических свойств обрабатываемого материала и ряда других факторов. Колебание упругих деформаций (перемещений) определяется  [c.183]

Шероховатость — один из показалелей качества поверхности — оценивается высотой, формой, направлением неровностей и другими параметрами. На шероховатость влияют режим резания, геометрия инструмента, вибрации, физико-механические свойства материала заготовки  [c.258]

Особенности строения и физико-механические свойства пластмасс существенно влияют на технологию их обработки, конструкцию режущего инструмента и приспособлений. Пластмассы имеют более низкие механ[1ческие свойства по сравнению с металлом. Эту особенность можно было бы использовать для повышения скорости резания. Однако низкая теплопроводность пластмасс приводит к концентрации теплоты, образующейся в зоне резания. В результате этого происходит интенсивный нагрев режущего инструмента, размягчение или оплавление термопластов, обугливание или прижог реактопластов в зоне резания. При обработке деталей из термопластов максимальная температура процесса не должна превышать 60—120 С, а деталей из реактопластов 120—160 С. Образующаяся теплота при обработке пластмасс отводится в основном через инструмент.  [c.442]

Если задана стойкость инструмента, то скорость резания можно принять производной от глубины резания и подачи. Следовательно, два последних параметра и определяют многовариантный характер рассматриваемой 2 адачи. Глубина резания на первом переходе теоретически может принимать значения от максимального тах, равного общему максимальному припуску на рассматриваемую поверхность, до минимального щш, допустимого физикой процесса резания. Каждое последующее значение глубины резания может отличаться от предыдущего на величину /, характеризуемую возможностью устойчивого регулирования при данной конструкции настроечного устройства. Таким образом, на первом переходе глубина резания выражается величиной тах—/Т, где / = 0, 1, 2,. .., р. Каждая из указанных глубин резания может образовывать новый вариант первого перехода в сочетании с различными величинами подач, принимающими значение от Хтах до щщ. В результате образуется определенное множество вариантов выполнения первого перехода, неравноценных как по получаемой точности обработки, так и по затратам (например, технологической себестоимости).  [c.107]


Реализация комбинированного модифицирования инструментальных твердых сплавов слаботочными ионными пучками в режиме ионной имплантации [132] направлена на решение задачи повышения стойкости твердосгглавного режущего инструмента при обработке жаропрочных титановых сплавов на чистовых и получистовых режимах резания. В этих условиях основными причинами изнашивания твердых сплавов являются интенсивные физико-химические процессы адгезионного и диффузионного характера. Поэтому снижение интенсивности изнашивания инструментального материала в данных условиях может быть обеспечено путем управления интенсивностью указанных процессов  [c.226]

Характер зависимостей глубины и степени наклепа от подачи и скорости резания при фрезеровании подобен аналогичным зависимостям при точении. С увеличением подачи (рис. 3.8) до определенной величины, зависящей от физико-механических свойств обрабатываемого металла, глубина и степень наклепа поверхностного слоя уменьшаются, а затем возрастают при дальнейшем увеличении подачи. Следовательно, существует оптимальная подача, при которой наклеп поверхностного слоя имеет наименьшее значение. Оптимальная подача для сплава ЭИ437 равна = 0,15 мм.  [c.100]

Таким образом, в процессе резания работа затрачивается в основном на пластическую деформацию металла и на трение, причем последняя почти целиком превращается в теплоту, за счет которой происходит нагревание резца, изделия и стружки. Из приведенного примера ясно, что физико-механический процесс, связанный с непосредственной обработкой объекта, является основой технологического процесса производственно-технологиче-ской машины.  [c.28]

Как известно, пластмассы поддаются всем видам обработки резанием, которые выполняют на обычных металлорежущих станках. Этим методом изготавливают обычно уплотнители из капро-лона, фторопласта, поликапролактама и т. д. Для получения необходимого качества уплотнительной поверхности очень важен выбор режима резания и инструмента, причем при обработке рекомендуется учитывать специфические физико-механические свойства пластмасс низкую теплопроводность, относительную мягкость и др. Скорости резания и подачи, глубина резания для большинства пластмасс остаются приблизительно равными величинами, принятыми при обработке латуни и меди.  [c.66]

При выборе режимов резания следует иметь в виду, что нормативные материалы предусматривают только средние значения глубин резания, подач и скоростей резания. Эти элементы зависят от качества обрабатываемого материала, его физико-механических свойств, числа оборотов щпинделя станка в минуту, жесткости системы станок — приспособление — инструмент — деталь. Поэтому в практике эти средние значения могут быть увеличены или умень-1иены.  [c.470]

Внедрение автоматизации при изготовлении деталей и сборочных единиц машин невозможно без соблюдения постоянства размеров заготовки, стабильности физико-механических свойств ее материала и наличия минимальных припусков на обработку. Неточность размеров и отклонения от заданной геометрической формы у заготовок отрицательно сказываются на работоспособности зажимных устройств и установочных приспособлений, вызывают нарушение заданных режимов резания, перегрузку и вибрации режущего инструмента и рабочих органов станка, являются причиной поломки инструмента и приводят к браку (в результате одностороннего расположения припуска). Окалина в поверхностном слое поковок или корка у отливок нарушают нормальные условия работы инструмента, снижают производительность оборудования и вызывают простои на подна-ладку.  [c.347]

В зависимости от физико-химических свойств и исходной структуры материала деталей, режимов резания, геометрии режущего инструмента на разной глубине поверхностного слоя возникают различные фазовые превращения и изменение физикомеханических свойств поверхностного слоя, что приводит к возникновению в поверхностном слое значительных по величине остаточных напряжений различного знака. На величину и распределение остаточных напряжений наибольшее влияние оказывают скорость резания, нодача и величина переднего угла режущего инструмента. При уве.яичении подачи возрастает толщина снимаемого слоя, увеличивается степень пластической деформации поверхностного слоя, возрастают силы трения и количество тепла, выделяющегося в зоне резания, а следовательно, растут величина и глубина распространения остаточных напряжений.  [c.386]

Высокопроизводительная обработка во многом зависит от правильного выбора режимов резания на каиедой операции. Скорость резания, подача, глубина резания и сечение стружки зависят от качества обрабатываемого изделия и его физико-механических свойств, материала и геометрии режущего инструмента, мощности и числа оборотов шпин деля станка в минуту и т. д.  [c.110]

Важность этого вопроса еще более возрастает в связи с увеличением единичных мощностей агрегатов, которые намечены Дирек-тивами XXIV съезда партии на девятое пятилетие. Интенсивность использования более крупных единичных мощностей еще сильнее будет влиять на эффективность производства. Следует отметить, что интенсификация процесса обработки может происходить как за счет повышения режимов обработки (например, скорости, подачи и глубины резания) без изменения физики процесса обработки, так и за счет создания нового способа формообразования поверхности обрабатываемого изделия. В последнем случае может происходить интенсификация использования не только средств труда (машины), но и предметов труда (изделия). Например, с изменением способа формообразования поверхности изделия повысился коэффициент использования металла (сократилась разность между весом заготовки и весом готового изделия, что очень актуально для машиностроения и металлообработки, где коэффициент использования металла составляет. 0,7, т. е. 30% металла, потребляемого в отрасли, идет в отходы). И в этом, и другом случае реализация путей повышения интенсивности обработки требует больших изменений (а порой коренных, принципиальных изменений, например, при переходе от механического сверления к применению лазерного луча) в конструкции машины.  [c.98]

Прочность металлов увеличивают, во-первых, путем легирования сталей элементами, образующими твердые растворы внедрения или замещения и вызывающими искажение решетки растворителя. При некоторых соотношениях легирующих элементов и углерода в сталях и сплавах образуются твердые карбиды и интерметаллидные включения, значительно усложняющие обрабатываемость резанием. Во-вторых, термической и термомеханической обработкой, в результате которой повышается плотность дислокаций, уменьшается величина зерна, создается вторая интерметал-лидная дисперсная фаза в матрице. Термомеханическая обработка некоторых сплавов (например, Ni—Сг—Мо) вызывает появление концентрационных неоднородностей, повышающих сопротивление деформации, нарушающих стабильность физико-механических свойств и тем затрудняющих обрабатываемость резанием.  [c.326]


В действительности скорости резания и, следовательно, производительность могут значительно изменяться в зависимости от марки твердого сплава и быстрорежущей стали, их термической обработки, заточки, а также жесткости системы и др. Необходимо подчеркнуть, что высокопрочные сложнолегированные стали и сплавы особенно чувствительны к указанным выше факторам и к тому же не отличаются стабильностью физико-механических свойств и обрабатываемости иногда даже в одной и той же заготовке.  [c.330]

Производительность процесса, чистота и точность обработки, а также износ инструмента в значительной степени зависит от физико-механических свойств материалов. Наиболее успешно обрабатываются хрупкие непластичные материалы. Размерная обработка отверстий в закаленных сталях, пластичных жаропрочных и других аустенитных сталях и сплавах является непроизводительной и неэкономичной по сравнению с процессом резания. Целесообразна ультразвуковая обработка весьма твердых материалов (твердых сплавов, минералов и др.), когда невозмол<но применение нормального режущего инструмента.  [c.345]


Смотреть страницы где упоминается термин Резание Физика : [c.72]    [c.54]    [c.262]    [c.267]    [c.22]    [c.219]    [c.225]    [c.255]    [c.48]    [c.106]    [c.133]   
Справочник машиностроителя Том 5 Книга 2 Изд.3 (1964) -- [ c.453 ]



ПОИСК



Влияние на обрабатываемость резанием жаропрочных сталей и сплавов их химического состава, физико-механических свойств и термической обработки

Измерение величин, характеризующих физико-химические процессы при резании

Некоторые сведения из физики твердого тела I в связи с процессом резания Понятия о кристалле

Покрытия защитные металлические металлические напыленные Обточка резцами — Режимы резания 343 — Припуски на обработку 343 — Физико-механические свойства

Физика процесса резания

Физико-механические основы обработки конструкционных материалов резанием

Физико-механические основы обработки металлов резанием

Физико-химические и механические основы процесса резания

Формирование физико-механических свойств поверхностных слоев деталей машин при обработке резанием и их влияние на эксплуатационные свойства



© 2025 Mash-xxl.info Реклама на сайте