Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент линейного расширения для сварке

Коэффициенты линейного расширения для разных металлов различны и зависят от температуры (рис. 162). Коэффициент линейного расширения железа изменяется при введении легирующих элементов. Так, содержание в стали марганца и никеля повышает коэффициент линейного расширения, тогда как увеличение концентрации хрома снижает его. Металлы с меньшим коэффициентом линейного расширения при прочих равных условиях дают после сварки  [c.299]


Температурный коэффициент линейного расширения стекол играет важную роль при спайке и сварке друг с другом различных стекол, при впайке металлической проволоки или ленты в стекло, при нанесении стеклоэмали на ту или иную поверхность. Необходимо подбирать значения а, стекла и соединяемых с ним материалов приблизительно одинаковыми, иначе при смене температур может произойти растрескивание стекла, нарушение герметичности в месте ввода металлической проволоки в стекло. Применяемые в практике названия стекла вольфрамовое и молибденовое объясняются не составом их, а тем, что значения , этих стекол близки к вольфрама И соответственно молибдена, что весьма важно для электровакуумной техники.  [c.161]

Использование для облицовки сталей с различными коэффициентами линейного расширения позволяло оценить влияние возникающих в них остаточных напряжений на сопротивление усталости. Образцы вырезались из больших облицованных плит и испытывались в трех состояниях после сварки после отпуска при 630° С в течение 6 ч после отпуска при 630° С в течение 12 ч с последующим отжигом при 930° С в течение 4 ч и повторным отпуском при 630° С в течение 2 ч.  [c.43]

Сварка коррозионно-стойких, жаропрочных сталей и сплавов. Стали и сплавы этого класса обладают хорошей свариваемостью. Однако теплофизические свойства и склонность к образованию в шве и околошовной зоне горячих трещин определяют некоторые особенности их сварки. Характерные для большинства сталей и сплавов низкая теплопроводность и высокий коэффициент линейного расширения обусловливают при прочих равных условиях (способе сварки, геометрии кромок и др.) расширение зоны проплавления и областей, нагретых до различных температур, и увеличение суммарной пластической деформации металла шва и околошовной зоны. Это увеличивает коробление конструкций. Поэтому следует применять способы и режимы сварки, характеризующиеся максимальной концентрацией тепловой энергии. Оценка возможностей дуговых способов сварки по толщине детали дана в табл. I.  [c.28]

После окончания термообработки необходимо ускоренное охлаждение для предотвращения 475 °С-ной хрупкости (см. гл. 9). Возможна также сварка аустенитными электродами, Однако при этом термообработка не приводит к полному снятию сварочных напряжений из-за различия в коэффициентах линейного расширения шва и основного металла.  [c.401]

Закономерности развития диффузионных прослоек детально рассмотрены в литературе [29]. В работе [39] с помощью параметрической зависимости (п. 14) были подсчитаны значения ширины обезуглероженной прослойки за 10 я в зоне сплавления малоуглеродистой стали с аустенитными швами, имеющими около 15% хрома и переменное содержание никеля. При содержании Б шве до 20% никеля обезуглероженная прослойка за 10 ч возникает уже при температуре 350° С (рис. 130). С повышением содержания никеля в шве до 50—60% температура появления обезуглероженной прослойки на 10 ч повышается до 450° С, а при еще большем содержании никеля и до 500° С. Такое благоприятное влияние никеля делает электродные материалы на его основе наиболее перспективными для сварки конструкций, работающих при высоких температурах. Их преимуществами являются также близость коэффициентов линейного расширения шва к пер-  [c.252]


Железоникелевые сплавы удовлетворительно штампуются, куются, прокатываются, обрабатываются резанием. Для дополнительного снижения температурного коэффициента линейного расширения проводят термическую обработку инваров, состоящую из закалки от 840 °С в воде, отпуска при 315 °С и старения в течение 50-100 ч при 100 °С. Железоникелевые сплавы удовлетворительно свариваются. Обычно применяется дуговая сварка в среде аргона. В качестве присадочного материала используют проволоку близкого состава. Сварные соединения не требуют термической обработки, их прочность близка к прочности основного металла.  [c.619]

С помощью газовой сварки производят наплавку только литыми твердыми сплавами при избытке ацетилена. Для качественной наплавки литого твердого сплава необходимо тщательно зачистить и разделить место под наплавку и подогреть его до 650—700°С. Наплавленный слой твердого сплава обладает хрупкостью, малой теплопроводностью (по сравнению с углеродистой сталью) и высоким коэффициентом линейного расширения, поэтому после наплавки его необходимо отжечь при температуре 1000—1100°С.  [c.272]

При сварке деталей из алюминиевых сплавов в них возникают значительные внутренние напряжения, которые вызывают деформации. Причинами внутренних напряжений являются большая литейная усадка при охлаждении сплава из расплавленного состояния и высокий коэффициент его линейного расширения. Для снижения внутренних напряжений рекомендуется подогреть детали перед сваркой до температуры 250—300°С и медленно охладить после сварки.  [c.164]

Мерой борьбы с появлением внутренних напряжений является термическая обработка нормализация для углеродистой стали и закалка с высоким отпуском для специальной стали. После правильно проведенной термической обработки сварной шоз и зоны влияния приобретают мелкозернистое строение, а внутренние напряжения становятся минимальными. При электродуговой сварке зона термического влияния в каждую сторону от шва достигает 12 мм, а при газовой сварке — 30 мм. Благодаря указанному преимуществу электродуговая сварка широко применяется в промышленности. Сварка цветных металлов и сплавов не вызывает затруднений, однако необходимо учитывать легкую окисляемость металла, значительный коэффициент линейного расширения и тугоплавкость образующихся окислов.  [c.295]

Водород, соединяясь с кислородом закиси меди, образует водяной пар, который является причиной появления трещин (водородная болезнь) и пор в металле шва. Стойкость металла шва против пор при сварке меди ниже, чем стали. Самые хорошие результаты получаются при использовании односторонних стыковых швов со сквозным проплавлением кромок. Примеси свинца, мышьяка, висмута и сурьмы затрудняют сварку меди. Наилучшую свариваемость имеет электролитическая медь, содержащая не более 0,4% примесей. Высокая теплопроводность меди требует применения концентрированных источников нагрева, в ряде случаев предварительного и сопутствующего подогревов, а высокий коэффициент линейного расширения — принятия дополнительных мер против коробления конструкции. Сварные соединения собираются без зазора ввиду большой жидкотекучести меди, общий угол разделки кромок 60—70°. Для изделий толщиной 1—3 мм используют сварные соединения с отбортовкой, заваривая их без присадочного металла. При толщине 4—10 мм применяется 1 -образ-ная разделка с притуплением 1,5—3 мм, при больших толщинах — Х-образная. Изделия толщиной более 6 мм сваривают с предварительным подогревом. Для получения металла шва и околошовной зоны с мелкозернистым строением сварные соединения подвергают проковке в холодном состоянии (толщина до 6 мм) и при температуре 200—30б°С (толщина свыше 6 мм), а пластичность и  [c.142]

Алюминий применяется в строительстве и промышленности благодаря небольшой плотности (2,7 г/см ), примерно в 3 раза меньшей, чем у стали, повышенной хладостойкости, коррозионной стойкости в окислительных средах и на воздухе. Алюминий и его сплавы имеют низкую температуру плавления (660 °С для чистого алюминия), высокую электро- и теплопроводность, повышенный по сравнению со сталью коэффициент линейного расширения. Алюминий и его сплавы существуют двух видов деформируемые (прессованные, катаные, кованые) и литейные (недеформируемые). Специфические свойства при сварке алюминия вызывают определенные трудности. Легкая окисляемость алюминия приводит к образованию на его поверхности плотной тугоплавкой окисной пленки, которая препятствует сплавлению частиц металла и загрязняет шов. Высокая температура плавления окисной пленки и низкая температура плавления алюминия, не изменяющего своего цвета при нагревании, крайне затрудняет управление процессом сварки. Большая жидкотекучесть и малая прочность при температуре свыше 550 °С вызывает необходимость применения подкладок. Значительная растворимость водорода в расплавленном алюминии и резкое ее изменение при переходе из л<идкого состояния  [c.16]


При сварке нержавеющих сталей при мягких режимах возможно выпадение карбидов хрома и потеря нержавеющих свойств металла околошовной зоны. Кроме того, сварка при мягких режимах сопровождается появлением больших деформаций. Это объясняется высоким коэффициентом линейного расширения нержавеющих сталей и большой зоной разогрева, характерной для сварки при этих режимах.  [c.238]

Коэффициенты линейного расширения металлов и сплавов 28 Коэффициенты теплопроводности для различных материалов 30 Кузнечная сварка 140 Кристаллизация металла шва 163 Карбиды 176  [c.638]

Алюминий имеет большой коэффициент линейного расширения, увеличивающийся с повышением чистоты металла и температуры нагрева. Объемная усадка расплавленного алюминия при затвердевании составляет примерно 6,6%, что значительно больше, чем у многих металлов и сплавов. Эти свойства алюминия приводят к большим внутренним напряжениям (или деформациям) при местном нагреве, который является характерным для сварки. Кроме того, большая усадка отрицательно влияет на формирование шва. В конце шва после обрыва дуги образуется глубокий кратер, возможно также появление трещин.  [c.21]

Большие значения коэффициента линейного расширения при нагреве и коэффициента объемной усадки при остывании расплавленного металла вызывают повышенные внутренние напряжения при сварке, которые могут привести к большим деформациям сварной конструкции или к трещинам при сварке в жестких замкнутых контурах. Следует отметить, что высокая пластичность и малая прочность чистого алюминия уменьшают опасность образования трещин и позволяют эффективно применять сварку в жестких кондукторах, устраняющих коробление конструкций. Для высокопрочных, термически упрочняемых сплавов трещины при 82  [c.82]

Технологические особенности сварки высоколегированных сталей и сплавов. Технология сварки высоколегированных сталей такая же, как и углеродистых конструкционных сталей. Вместе с тем имеется ряд специфических особенностей, присущих только этой группе материалов. Пониженная теплопроводность и высокий коэффициент линейного расширения обусловливают усиленное коробление конструкций и узлов из высоколегированных сталей и сплавов. Поэтому для их сварки применяют режимы, которые характеризуются минимальной концентрацией нагрева. В этом смысле лучшие результаты дает механизированная сварка под флюсом и в среде защитных газов.  [c.603]

Отмеченные трудности обусловили особенности сварки разнородных сталей, заключающиеся в том, что для получения качественных и надежно работающих в специфических условиях сварных соединений необходимо применять технологию сварки, которая предотвращает образование трещин в металле шва, исключает изменение в зоне сплавления химического состава и структуры сплавляемых металлов, приводящее к образованию указанной выше структурной неоднородности, и обеспечивает получение сварных соединений с возможно более близкими коэффициентами линейного расширения сплавляемых металлов.  [c.625]

При таком нагреве происходит заблаговременное частичное выделение и коагуляция части интерметаллидных фаз из твердого раствора, снижаются сварочные и структурные напряжения. Показатели механической прочности при этом снижаются незначительно. Вследствие высокого коэффициента линейного расширения алюминия при его сварке необходимо применять специальные меры для борьбы с деформациями (сварка в кондукторах, применение источников сосредоточенного нагрева и др.).  [c.640]

Для спайки со стеклом применяют сплавы с низким коэффициентом линейного расширения, пластичные, поддающиеся пайке и сварке с другими металлами, используемыми для электронной аппаратуры. Сплавы для спайки со стеклом выпускают в виде ленты, листов, прутков и проволоки.  [c.123]

Алюминиевые сплавы характеризуются высокой теплопроводностью, вследствие чего для их сварки требуется большее количество энергии, чем для сталей. Благодаря высокому значению коэффициента линейного расширения и низкому значению модуля упругости алюминиевые сплавы при сварке характеризуются значительными остаточными деформациями, превосходящими деформации сварных конструкций из сталей.  [c.433]

В связи с большой величиной коэффициента линейного расширения ы низки.м модулем упругости сплав имеет повышенную склонность к короблению. Поэтому 1Шобходимо прибегать к жесткому закреплению листов с помощью грузов, а такгке ннев-мо- или гидравлических прижимов на специальных стендах для сварки полотнищ и секций из этих сплавов. Ввиду высокой теплопроводности алюминия приспособления следует изготовлять из материалов с низкой теплопроводностью (легированР1ые стали и т. п.).  [c.354]

Нагрев и охлаждение металлов вызывают изменение линейных размеров тела и его объема. Эта зависимость выражается через функцию свободных объемных изменений а, вызванных термическим воздействием и структурными или фазовыми превращениями. Часто эту величину а называют коэффициентом линейного расширения. Значения коэффициентов а в условиях сварки следует определять дилатометрическим измерением. При этом на образце воспроизводят сварочный термический цикл и измеряют свободную температурную деформацию ёсв на незакрепленном образце. Текущее значение коэффициента а представляют как тангенс угла наклона касательной к дилатометрической кривой дг в/дТ. В тех случаях, когда полученная зависимость Вс Т) значительно отклоняется от прямолинейного закона, в расчет можно вводить среднее значение коэффициента ср = tg0 p, определяемое углом наклона прямой линии (рис. 11.6, кривая /). Если мгновенные значения а = дгс /дТ на стадиях нагрева и охлаждения существенно изменяются при изменении температуры, то целесообразно вводить в расчеты сварочных деформаций и напряжений переменные значения а, задавая функции а = а(Т) как для стадии нагрева, так и для стадии охлаждения. 4В  [c.413]


Эпюра остаточных напряжений, приведенная на рис. 11.11, в, характерна для сварки пластин из низколегированной и аустеиит-ной сталей, титановых сплавов или в общем случае для сварки металлов и сплавов, не претерпевающих структурных превращений при температурах 7<873...973 К. Максимальные остаточные напряжения 0 tmax при сварке аустенитных сталей обычно превосходят предел текучести. Это, по-видимому, связано с большим коэффициентом линейного расширения, а как следствие, большой пластической деформацией, вызывающей упрочнение металла с образованием высоких значений продольных остаточных напряжений. В титановых сплавах максимальные остаточные напряжения, как правило, ниже предела текучести основного материала в исходном состоянии и составляют (0,7...1,0) Oj. При этом высокие значения остаточных напряжений соответствуют сварке на интенсивных режимах с большой эффективной мощностью и большой скоростью.  [c.426]

Стали относятся к группе мартенситных, хорошо закаливаются на воздухе или в масле, обладают высокими механическими свойствами при комнатных и повышенных температурах. При температурах глубокого холода имеют малую ударную вязкость. Коэффициент линейного расширения этих сталей невелик, что очень важно для уменьшения зазора в осевых компрессорах газовых турбин. Большинство сталей при охлаждении на воздухе с температур выше критических нодзакаливаются, что следует учитывать при сварке, термической обработке и обработке давлением.  [c.131]

Сплав имеет высокое сопротивление усталости при асимметричном растяжении при 20, 700 и 800° С и Щ1клических нагрузках достаточное электрическое сопротивление для использования его в ряде случаев в качестве нагревательных элементов сравнительно невысокий коэффициент линейного расширения и низкую теплонровод-ность, повышающуюся с температурой, что способствует большей стойкости деталей против теплосмен. Сплав хорошо сваривается различным видами сварки н имеет высокие механические свойства в сварных соединениях.  [c.179]

Сварка алюминия и его сплавов. При сварке деталей из алюминия и его сплавов возникают трудности, связанные с тугоплавкостью пленки окислов (AI2O3) на поверхности деталей, температура плавления которой 2050 °С. Пленка мешает соединению свариваемых деталей, поскольку температура плавления алюминия 658 °С. Коэффициент линейного расширения алюминия в 2 раза, а теплопроводность в 3 раза больше, чем эти же параметры для стали, что приводит к значительным деформациям свариваемых деталей.  [c.120]

Наравне с многоступенчатой технологией разработана одноступенчатая технология спайки керамики с активными металлами Ti, Zr, которая получила название термокомпрессионная сварка . Сущность, этой технологии заключается в том, что спай образуется за одну операцию без предварительной металлизации молибденом и покрытия вторым слоем никеля в результате взаимодействия между твердыми фазами. Сварка происходит под давлением до 20—30 МПа и при одновременном нагреве до 1000°С. Однако область применения термокомпрессионной сварки существенно ограничена. Получать вакуумно-плотные спаи можно только при полном согласовании коэффициентов расширения активного металла и керамики во всем диапазоне температур, начиная от температуры затвердевания припоя до комнатной. В частности, хорошие результаты дает спай титана с фор-стеритовой керамикой, коэффициент линейного расширения которых почти полностью совпадает и составляет 9—9,5-10- . В качестве припоя для спайки керамики с титаном используют эвтектический сплав с температурой плавления 779°С, чистые никель и медь, с которыми титан образует легкоплавкие эвтектики, имеющие температуру плавления 970—1000°С. Титан с керамикой паяют в колпаковых вакуумных печах, в которых поддерживают вакуум не ниже 1 сПа.  [c.89]

При сварке методом "автоопрессовки" получение выпуклости шва достигается за счет пластической деформации нафетого металла в направлении, перпендикулярном оси трубы, при многократном нагреве металла в месте стыка. Этим способом можно сваривать трубы из металла с большим коэффициентом линейного расширения. Сварку первого слоя рекомендуется выполнять короткой дугой длиной до 1,2 мм на максимально возможной скорости для получения узких швов с неполным проваром. Остальные три - пять проходов выполняют для получения выпуююсти шва.  [c.142]

Сплавы, которые предназначены для пайки и сварки со стеклом и керамикой должны иметь температурный коэффициент линейного расширения, равный коэффициенту расширения этих материалов. Это необходимо для обеспечения герметичности спая при изготовлении приборюв и в условиях эксплуатации. Поэтому коэффициенты должны совпадать во всем диапозоне рабочих температур. Для этой цели также используют железоникелевые сплавы, дополнительно легированные кобальтом и медью.  [c.186]

При коммутации ТЭЭЛ пайкой и сваркой (а также прессованием) любые изменения температуры сопровождаются термическими напряжениями в местах контактов материалов, имеющих различные коэффициенты линейного расширения. Эти напряжения приводят к появлению трещин, к расслоениям и другим нарушениям. В связи с этим важен правильный подбор контактирующих материалов по коэффициенту линейного расширения. В некоторых случаях возникает необходимость введения промежуточных слоев нейтральных материалов для уменьшения большой разницы в линейном расширении. Характеристики некоторых коммутационных материалов приведены Б табл. 5.1.  [c.97]

Измерение температуры сварки производится фотопирометром и термопарой совместно с потенциометром, который одновременно с измерением и записью производит автоматическое регулирование режима работы высокочастотного генератора. Диффузионная сварка выгодно отличается от других способов тем, что для образования соединения не требуются припои, флюсы, электроды, присадочная проволока и прочие вспомогательные материалы. Подавляющее большинство металлов, сплавов и материалов можно соединять в однородном и разнородных сочетаниях, при этом исходные физико-механические свойства соединяемых элементов практически не изменяются. Если свариваются однородные материалы (например, одинаковые металлы, сплавы, полупроводниковые элементы одинакового состава и т. п.), в соединении не удается обнаружить границы раздела двух тел. При сварке разнородных металлов, особенно таких, элементы которых не обладают взаимной растворимостью, в зоне контакта может образоваться хрупкая интерметаллическая прослойка, сильно снижающая пластичность и прочность. В этом случае сварку производят с промежуточной прокладкой в виде фольги из третьего металла, образующего твердые растворы с элементами свариваемой пары. Такие же прокладки используют прп сварке материалов, у которых сильно отличаются коэффициенты линейного расширения.  [c.408]

Газовая сварка деталей из нержавеющих сталей затруднена тем, что эти стали обладают высоким коэффициентом линейного расширения, склонны к выделению карбидов и образованию тугоплавкой пленки окислов. При получении качественного шва нужно обратить особое внимание на подготовку кромок. Кромки должны быть хорошо зачищены, а зазоры—выдержаны по всей длине. Присадкой при первой сварке служат хорошо очищенные прутки или полоски, нарезанные из листовой стали такого же состава, что и основной материал. Для расплавления образующихся тугоплавких окислов необходимо пользоваться флюсами. Лучшие результаты получаются при использовании флюса, в состав которого входят фарфор — 30%, мрамор — 28%, двуокись титана— 20%, ферромарганец—10%, ферросилиций — 6%, ферротитан — 6%, жидкое стекло — 650 г на 1 кг смеси. Мощность горелки следует подбирать, учитывая расход ацетилена (75 л1час) на 1 мм толщины свариваемой детали. Пламя горелки должно быть строго нейтральным. Сварку надо вести быстро, без перерывов.  [c.304]


Технология сварки высоколегированных сталей за некоторыми исключениями не отличается от технологии сварки углеродистых конструктивных сталей. Из-за пониженной теплопроводности и высокого коэффициента линейного расширения во избежание коробления необходимо выбирать режимы сварки, обеспечивающие минимальную концентрацию нагрева. Сварку аустенитных сталей выполняют укороченными электродами для снижения коэффициента наплавки. Для получения заданной глубины провара силу тока снижают на 10—15 % по сравнению со сваркой углероднстон стали. Для уменьшения угара легирующих элементов сварку ведут короткой дугой без колебаний конца электрода. При сварке коррозионностойких сталей не допускается воз-  [c.111]

Одним из путей экономии дорогостоящих высоколегированных сталей является применение комбинированных конструкций, изготовленных из нескольких сталей. Сварка высоколегированных сталей со средне- или низколегированными и обычными углеродистыми сталями явилась настолько трудной задачей, что составила целую проблему, известную как проблема сварки разнородных сталей. При сварке разнородных сталей в шве часто появляются трещины, в зоне сплавления может происходить изменение структуры с образованием прослоек, существенно отличающихся от структуры свариваемых металлов. Сварка разнородных сталей затруднена еще тем, что в подавляющем большинстве случаев они отличаются друг от друга коэффициентом линейного расширения. Основным путем решения вопроса сварки разнородных сталей является использование сварочных материалов, способствующих. получению аустенитного металла шва с высоким содержанием никеля, который обеспечивает стабильную зону сплавления. Содержание никеля в металле шва зависит от температуры его эксплуатации. Для экономии никеля сварные соединения разнородных сталей делят на четыре группы I — работающие пои температурах до 350 °С, П — 350 —450 °С, И1 —450 —550°С и IV —выше 550 °С. Ручную сварку разнородных сталей первой группы можно производить существующими электродами. Не следует пользоваться электродами типа ЭА-1. Для соединений П—IV групп рекомендуются электроды АНЖР-1, АНЖР-2 и АНЖР-3. В остальном технология сварки разнородных сталей такая же, как и сварки других сталей.  [c.113]

При сварке высоколегированных сталей на мягком режиме возможны выпадение карбидов хрома и потеря коррозтюнно-стойкнх свойств металла шва и околошовной зоны. Кроме того, сварка на мягких режимах сопровождается появлением больших деформаций. Это объясняется высоким коэффициентом линейного расширения легированных сталей и большой зоной разогрева, характерной для сварки при этих режимах. Сварка алюминия и меди па мягких режимах невозможна вследствие большой теплопроводности и электропроводи- o ти этих металлов и неизбежного перегрева металла околошовной зоны.  [c.289]

Конструкции пз аустенитных сталей подвергаются значительно большему короблению при сварке, чем обычные это связано, как уже отмечалось выше, с меньшей теплопроводностью и высоким коэффициентом линейного расширения, присущим таким сталям. Для борьбы с короблением сварку аустенитных сталей производят на малых режимах и на больших скоростях, а также применяют специальные приемы сваркп, о которых будет сказано ниже.  [c.35]

При выборе того или иного сочетания исходят главным образом из условий работы аппарата или установки, для изготовления которых предназначается биметалл агрессивная среда, нагрузки, температура и т. п. Учитывают также технологические требования к материалу, вытекающие из конструкции аппарата и процесса его изготовления необходимость сварки, гибки, штамповки и т. д. Поскольку эксплуатационные и технологические услория чрезвычайно разнообразны, в последнее время наблюдается тенденция к расширению марочного состава двухслойных сталей по числу марок основного и плакирующего металлов. Возможности для этого имеются в связи с освоением новых способов получения биметалла, позволяющих соединять практически любые металлы. Это, разумеется, не означает, что возможно и целесообразно любое сочетание из приведенных выше металлов. Определенные ограничения накладываются возможно<стями совместной термической обработки двух металлов, различием в коэффициентах линейного расширения или другим факторами.  [c.135]

В связи с изложенным основным путем решения вопроса сварки разнородных сталей следует признать применение сварочных материалов, способствующих получению аустенитного металла шва с высоким содержанием никеля, который, как показала практика, обеспечивает вполне стабильную зону сплавления. Преимущество высоконикелевого металла состоит также в близости его коэффициента линейного расширения к этому коэффициенту низко- и среднелегированных сталей. В связи с тем, что никель является дефицитным и довольно дорогим элементом, а также элементом, способствующим образованию горячих трещин в сварных швах, в металле последних целесообразно иметь лишь то количество никеля, которое необходимо для предупреж-  [c.630]


Смотреть страницы где упоминается термин Коэффициент линейного расширения для сварке : [c.314]    [c.345]    [c.513]    [c.133]    [c.18]    [c.52]    [c.205]    [c.181]    [c.101]    [c.23]   
Справочник машиностроителя Том 5 Книга 2 Изд.3 (1964) -- [ c.235 , c.236 ]



ПОИСК



81, 82 — Коэффициенты линейного расширения 74 — Коэффициенты

Коэффициент линейного расширения

Коэффициент линейный

Коэффициенты расширения

Линейное расширение



© 2025 Mash-xxl.info Реклама на сайте