Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Траектории искусственных спутников

ПОНЯТИЕ О ТРАЕКТОРИЯХ ИСКУССТВЕННЫХ СПУТНИКОВ ЗЕМЛИ  [c.205]

Резаля 155 Теоремы Ляпунова 336 Теория удара 257 Тождество Пуассона 379 Точка изображающая 391 Траектория движения системы 391 Траектории искусственных спутников  [c.422]

Задача 153-28. Круговая орбита (траектория) искусственного спутника Земли лежит в плоскости экватора. Скорость спутника на орбите 3,05 км/с. На какой высоте над поверхностью Земли должна проходить орбита спутника, чтобы он постоянно находился над одной и той же точкой земного экватора и каково будет на этой высоте нормальное ускорение спутника Радиус Земли 6400 км.  [c.208]


В целом раде проблем, например в задачах небесной механики — при вычислении траекторий искусственных спутников, при исследованиях, связанных с движением нашей планеты (опыты Фуко), и др., за инерциальную систему принимают систему координат, начало которой находится в центре Солнца, а оси направлены на какие-либо три неподвижные звезды. Чтобы показать, как незначительна погрешность, которую допускают, считая звезды неподвижными друг относительно друга, представим себе модель звездного мира, сделанную в масштабе 1 1 000 000 000 000. В таком масштабе наше Солнце, диаметр которого 1 500 000 км, изобразится шариком с булавочную головку диаметром 1,5 мм. На расстоянии 15 см от этого шарика будет кружиться невидимая глазу пылинка—Земля. Другие же звезды, в среднем такие же булавочные головки, мы должны будем поместить километров на 40 от Солнца и друг от друга. Если принять скорость Солнца относительно соседних звезд равной 150 км сек, то, следовательно (в том же масштабе), модель Солнца (начало координат) движется со скоростью 1 мм ч. Таким образом, относительные перемещения звезд ничтожны, и систему отсчета, связанную со звездами, можно принимать за инерциальную с большой степенью точности.  [c.249]

Движение материальной точки в ньютонианском поле тяготения Земли. Понятие о траекториях искусственных спутников Земли.  [c.673]

На основе законов механики производятся определения орбит (траекторий) искусственных спутников Земли столь точно, что координаты спутника на небесной сфере на несколько дней (несколько недель, месяцев и даже лет в зависимости от высоты орбиты) вперед сообщаются наблюдательным пунктам всего земного шара и эти предсказания выполняются безукоризненно.  [c.12]

ТРАЕКТОРИИ ИСКУССТВЕННЫХ СПУТНИКОВ ЗЕМЛИ 109  [c.109]

Траектории искусственных спутников Земли  [c.109]

В зависимости от конкретных значений Уо и бо траектории могут оказаться пересекающимися либо не пересекающимися с поверхностью Земли. Найдем, при каком значении и фиксированном значении угла 0о траектории не будут пересекать поверхность Земли, т. е. могут быть траекториями искусственных спутников Земли.  [c.110]

На основании законов механики производится вычисление орбит (траекторий) искусственных спутников Земли настолько точно, что предсказанные задолго текущие координаты спутника на небесной сфере хорошо совпадают с наблюдаемыми. При помощи расчетов, основанных на законах классической механики и аэромеханики, в конструкторских бюро авиационных заводов с большой точностью устанавливаются геометрические формы новых самолетов и определяются их летные характеристики (скорости на различных высотах, дальности при изменении полезной нагрузки и запасов горючего, практический потолок , устойчивость, управляемость и маневренность). Законы механики позволяют точно рассчитать траектории, скорости и дальности полета артиллерийских снарядов, баллистических ракет дальнего действия, беспилотных самолетов. Успехи нашей страны в завоевании космоса были бы невозможны без знаний механики. Всюду, где инженеру приходится иметь дело с механическими движениями, теоретическая механика дает надежную, проверенную практикой основу для правильного познания различных  [c.16]


Мы здесь считаем, что дуга окружности есть траектория свободного движения точки переменной массы, в частности, например, это может быть траектория искусственного спутника Земли,  [c.179]

Задача 1083. Период обращения первого советского искусственного спутника Земли в первый день его движения составлял Т = 96,2 мин. Считая траекторию спутника близкой к круговой, определить среднюю высоту спутника над поверхностью Земли. Радиус Земли принять равным 6370 км, сопротивлением пренебречь.  [c.377]

Задача 1092. Период обращения второго советского искусственного спутника Земли Т = 103,75 мин. Наибольшая высота его подъема над поверхностью Земли Я = 1670 км. Определить траекторию и модуль начальной скорости спутника, считая, что его начальная скорость ортогональна к начальному полярному радиусу Радиус Земли принять равным 6370 км, сопротивлением пренебречь.  [c.378]

Но законы Кеплера не учитывают многих факторов, возмущающих движения планет. Для планет такими факторами являются в основном их взаимные притяжения. На движение же искусственные спутников Земли влияют несферичность Земли, ее сжатие, затормаживающее действие земной атмосферы, притяжение со стороны Солнца и Луны, магнитное поле Земли и др. Для точного расчета траекторий и законов движения спутников следует учитывать все эти факторы.  [c.508]

В действительности это не так — существует конечная максимальная скорость распространения взаимодействий, которая равна скорости света в вакууме. Поэтому третий закон Ньютона (а также и второй) имеет определенные пределы применимости. Однако при скоростях тел, значительно меньших скорости света, с которыми имеет дело ньютоновская механика, оба закона выполняются с очень большой точностью. Свидетельством этому являются хотя бы расчеты траекторий планет и искусственных спутников, которые проводятся с астрономической точностью именно с помощью законов Ньютона.  [c.42]

В 90 нами уже была рассмотрена задача (см. задачу 79) о движении материальной точки в поле тяготения Земли для случая, когда дальность и высота полета траектории материальной точки были достаточно малы по сравнению с радиусом Земли. Здесь же мы рассмотрим задачу о движении материальной точки в поле тяготения Земли для случая, когда дальность и высота полета траектории этой точки сравнимы с радиусом Земли в этом случае необходимо (в отличие от задачи 79) учитывать изменение силы тяготения с расстоянием. Исследование этой задачи сыграло большую роль при изучении движения ракет дальнего действия и искусственных спутников  [c.673]

Если эллиптическая траектория точки В, брошенной с поверхности Земли, охватывает поверхность Земли, то точка В превратится в искусственный спутник Земли. Таким образом, для того чтобы точка стала спутником Земли, необходимо выполнение условий  [c.677]

Циолковский выдвинул идею создания многоступенчатых ракет, или ракетных поездов . Если скорость всех ступеней увеличивается на одну и ту же величину V, а число ступеней п, то суммарная скорость ракеты при выходе ее на пассивный участок траектории, где двигатели выключаются, VE = nv. Предположим, что скорость истечения газов из сопла ракеты составляет 3—4 км/с, тогда трех ступеней оказывается достаточно для запуска искусственных спутников Земли, а четырех — для запуска межпланетных кораблей.  [c.111]

При расчете траекторий ракет и искусственных спутников также оказалось, что в ряде случаев нужно учитывать отклонение реального поля тяготения Земли от центрального, обусловленного ее сплюснутостью, отклонением в распределении ее масс от сферической симметрии. Погрешность от пренебрежения этим тем больше, чем ближе к поверхности Земли происходит движение ракеты или спутника. Например, для спутников, движущихся на расстоянии до 40 000 км от центра Земли, погрешность, вызванная тем, что не учитывается сплюснутость Земли, больше, чем погрешность, обусловленная пренебрежением возмущающим влиянием Луны и Солнца.  [c.121]


В связи с расширением программ космических полетов и созданием специализированных искусственных спутников Земли перед динамикой космического полета ставится в качестве основной задачи проектирование орбит или, точнее, программирование траекторий полета.  [c.41]

Скорость искусственного спутника отчасти зависит от высоты, па которой, как предполагается, будет постоянно совершать полет этот спутник. Если летательный аппарат двигается но круговой траектории  [c.189]

Скорость, соответствующая числам М==5 и больше, при которых, во-первых, по-новому проявляется свойство сжимаемости воздуха — скачки уплотнения из прямолинейных, присоединенных к ЛА, становятся криволинейными, отсоединенными, что сказывается на величине сил давления и трения, действующих на поверхность ЛА, а значит и на аэродинамические характеристики его, и, во-вторых, в результате соударения с ЛА частиц воздуха и вызванного этим увеличения скорости хаотического движения их имеет место аэродинамический нагрев частей ЛА, а также наблюдается диссоциация и ионизация воздуха, что отрицательно влияет на аэродинамические характеристики и прочностные свойства ЛА Скорость, равная у поверхности Земли около 7,912 (8,0) км/с, при достижении которой ЛА превращается в искусственный спутник Земли. При этой скорости траектория (орбита), по которой движется ЛА (спутник), лежит еще в пределах земной атмосферы и земного притяжения, а космический корабль в своем движении будет описывать траекторию, близкую к эллипсу, с фокусом в центре Земли, и тем более вытянутую, чем больше начальная орбитальная скорость  [c.125]

Геометрическое место положений движущейся точки в рассматриваемой системе отсчета называется траекторией. По виду траектории движение точки делится на прямолинейное и криволинейное. Траектория точки может быть определена и задана заранее. Так, например, траектории искусственных спутников Земли и межпланетных станций вычисляют заранее, или, если принять движущиеся по городу автобусы за материальные точки, то их траектории (маршруты) также известны. В подобных случаях положение точки в каждый данный момент времени I определяется расстоянием (дуговой координатой) 5, т. е. длиной участка траектарии, отсчитанной от некоторой ее неподвижной точки, принятой за начало отсчета. Отсчет расстояний от начала траектории можно вести в обе стороны, поэтому отсчет в одну какую-либо сторону условно принимают за положительный, а в противоположную — за отрицательный, т. е. расстояние 5 — величина алгебраическая, она может быть положительной (5>0) или отрицательной (5< 0).  [c.82]

Понятие о траекториях искусственных спутников Земли. На космический корабль или искусственный спутник помимо поли тяготения Земли действуют поля тяготения других небесных тел (Солнца, Луны и др.). Однако при не слишком большом удалении от Земли решающую роль играет поле тяготения Земли, которое в первом приближении можно считать сферически симметричны центральным полом, чей центр совпадает с центром Зем.ти. Траекторию космическогв корабля можно разбить на два участка активный, во время прохождения которого двигатели работают, и пассивный, описываемый космическим кораблем после выключения двигателя. Определение пассивного участка траектории п поле тяготения Земли сводится к решению задачи Кеплера — Ньютона (см. п. 2. 2). Если пассивный участок траектории тела, запу-ш,енного с Земли в космическое пространство, представляет собой эллиптическую орбиту, то тело является искусственным спутником Земли.  [c.431]

Вертикально пикирующий a юлeт движется под действием собственной силы тяжест , поэтому в кабине его создается эффект невесомости. Космонавт в кабине спутника также движется только под действием собственной силы тяжести с центростремительным ускорением, равным ускорению свободного падения g на заданной высоте. Поэтому и ощущения космонавта такие же, как в кабине пикирующего, т. е. свободно падающего, самолета. Отметим, что пикирующий самолет движется не вертикально вниз, а по параболе, вытянутость которой определяется величиной горизонтальной составляющей скорости (рис. 139, б). Увеличивая ее, южнo получить траекторию, при которой самолет не будет вообще приближаться к Земле, — это и есть траектория искусственного спутника. Однако в условиях сопротивления атмосферы создать скорость 8 км/сек не представляется возможным. Также и движение Луны вокруг Земли — не что инее, как вечное свободное падение .  [c.182]

Движение в поле тяготения Земли. Искусственные спутники и эллиптические траектории. Приложим полученные выше результаты к изучению движения тела в поле тяготения Земли. Будем считать Землю неподвижной, а движущееся тело рассматривать как материальн) ю точку массы т. Сопротивлением воздуха будем пренебрегать, что для рассматриваемых далее высот полета в первом приближении допустимо. Пусть в начальный момент точка находится в положении Mq на расстоянии R — OMq от центра Земли (рис. 353) и пусть ускорение силы Земного притяжения в точке равно g. Заметим, что под R мы будем понимать любую величину, большую земного радиуса. В случаях, когда точка Mq берется на поверхности Земли, мы будем считать R равным радиусу земного экватора. Rq = 6Ъ78 км и = 0 = 9.81 Mj et .  [c.397]

Значения первой и второй космических скоростей были вычислены без учета сопротивления атмосферы. Если же его учесть, то для запуска ракеты ио круговой или иараболическоп траектории потребуется скорость, заметно превышающая эти значения. Иаиример, для запуска но параболической траектории с учето,ч сил сопротивления среды, как показывает расчет, ракета должна иметь скорость не менее 13—14 км/с. Сопротивление атмосферы значительно лишь на начально. участке траектории, т. е. на высотах примерно до 300 км над поверхностью Земли. Кроме того, с увеличением высоты А над земной поверхностью значение Vк2 уменьшается. Поэтому старт космического корабля на межпланетную траекторию выгоднее производить не с земного космодрома, а с искусственного спутника Земли, выведенного предварительно на круговую орбиту или близкую к ней. Так как ири этом космический корабль, находящийся на спутнике, уже имеет круговую скорость, то для выхода его из сферы действия Земли ему нужно сообщить лишь скорость, равную разности иараболической и круговой скоростей на данной высоте.  [c.120]


Уделяя серьезное внимание развитию ракетных и самолетных двигательных систем, Цандер разработал конструкции и провел испытания жидкостных реактивных двигателей ОР-2 и 10 с применением двигателя 10 25 ноября 1933 г. был осуществлен запуск второй советской ракеты ГИРД-Х (см. стр. 419). Столь же большое внимание уделялось Цандером теоретическим разработкам. Так, в 1924—1927 гг. он выполнил два исследования — Полеты на другие планеты (теория межпланетных путешествий) и Расчет полета межпланетного корабля в атмосфере Земли (спуск) . Опубликованные посмертно в 1961 г., они наряду с рассмотрением других проблем содержат определение величины и направления добавочной скорости, которую нужно сообщить межпланетному кораблю, движущемуся вокруг Земли по орбите искусственного спутника, чтобы достигнуть планеты Марс. В этих же работах впервые была поставлена и проанализирована задача корректирования траектории центра масс космического корабля при приближении к планете, являющейся целью полета, и даны таблицы (расписания) полетов с Земли на Марс, не утратившие своего значения до нашего времени [8].  [c.415]


Смотреть страницы где упоминается термин Траектории искусственных спутников : [c.10]    [c.121]    [c.143]    [c.120]    [c.183]    [c.433]    [c.452]    [c.41]    [c.41]    [c.228]   
Курс теоретической механики Ч.2 (1977) -- [ c.0 ]



ПОИСК



Газ искусственный

Искусственные спутники Земли. Эллиптические траектории

Понятие о траекториях искусственных спутников Земли

Спутник

Спутник искусственный

Траектории искусственных спутников Земли

Траектория

Траектория е-траектория



© 2025 Mash-xxl.info Реклама на сайте