Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные сведения из теории упругости

Основные сведения из теории упругости  [c.188]

Основные сведения из теории упругости.........  [c.402]

Вопросы определения гидродинамических нагрузок, действующих на упругие конструкции (оболочки) при их вертикальном входе в воду (которая представляется идеальной несжимаемой жидкостью) рассматриваются в четвертой главе. Расчетные фор-мулы для давления получ ены в предположении, что на начальной стадии погружения смоченную поверхность упругого тела можно аппроксимировать плоским расширяющимся диском (пластиной). Изложены основные сведения из теории тонких оболочек и приведены уравнения движения гиперболического типа.  [c.4]


Многие вопросы из той обширной области, которую представляет собой физическая акустика, мы не могли включить в эту книгу. Так, опущены разделы по квантовым явлениям и по взаимодействию звука с электронами в металлах, не рассмотрены процессы аэродинамической генерации звука, очень кратко освещены вопросы возбуждения и рассеяния звука. С другой стороны, некоторые разделы изложены более подробно, чем, казалось, следовало бы. Так, основным понятиям гидродинамики посвящена отдельная глава, в то время как аналогичные сведения из теории упругости излагаются весьма конспективно. Это связано с тем, что, как показал наш опыт, студенты обычно лучше знакомы с теорией упругости, чем с гидродинамикой. В книге мы намеренно уделили большое внимание нелинейным задачам наше твердое убеждение состоит в том, что развитие физической акустики идет и в ближайшее время пойдет еще более быстрыми темпами именно в этом направлении. Будут развиваться (как в теоретическом, так и в особенности в экспериментальном плане) те области физической акустики, где волны конечной амплитуды играют заметную роль.  [c.7]

Основные сведения из нелинейной теории упругости. .... 281  [c.402]

Вопросам усреднения уравнений с частными производными и их приложениям посвящена обширная литература. Настоящая книга почти не имеет пересечений с другими монографиями, в которых излагаются задачи усреднения дифференциальных операторов. Особое внимание в ней обращено на задачи, связанные с линейной стационарной системой теории упругости. Поэтому для удобства читателя первая глава книги содержит материал, относящийся к исследованию стационарной системы теории упругости. В ней рассматриваются вопросы существования и единственности решений основных краевых задач теории упругости, неравенства Корна и их обобщения, априорные оценки решений и их свойства, краевые задачи в так называемых перфорированных областях и свойства их решений, а также приводятся некоторые вспомогательные сведения из функционального анализа. Все эти результаты используются в последующих главах, многие из них излагаются впервые.  [c.6]

Данная глава включает шесть разделов, два приложения и список литературы. Основные сведения о распространении механических возмущений приведены в приложении А. Некоторые результаты, относящиеся к динамике линейно упругих тел, обсуждаются в приложении Б. В разд. II дается обзор теории эффективных модулей для слоистых сред и сред, армированных волокнами. Несколько более подробно рассматривается слоистая среда, состоящая из чередующихся слоев двух изотропных однородных материалов здесь находятся выражения для эффективных модулей через упругие постоянные материала и толщины слоев. Построенная теория используется для нахождения постоянных фазовых скоростей продольных и поперечных волн в направлении, параллельном слоям. После этого исследуются пределы применимости теории эффективных модулей для изучения волн в слоистой среде. Соответствующие ограничения устанавливаются сравнением частот и фазовых скоростей с точными значениями, найденными в разд. III.  [c.358]


Это уравнение определяет основную процедуру вариационного метода Канторовича-Власова, являющегося развитием более общего метода Фурье разделения переменных применительно к уравнениям теории упругости. Для сведения дифференциального уравнения в частных производных к обыкновенному дифференциальному уравнению необходимо использовать разложение (7.2) и выполнить операции в (7.5), т.е. умножить обе части исходного дифференциального уравнения на выбранную функцию ХДх) и проинтегрировать в пределах характерного размера пластины (для прямоугольной пластины это ее ширина). Точное решение получается, когда ряд (7.2) не усекается, а из (7.5) следует бесконечная система линейных дифференциальных уравнений и расчетная схема имеет бесконечное число степеней свободы в двух направлениях. При этом весьма удобно использовать ортогональную систему функций X x). В этом случае будут равны нулю многие побочные коэффициенты системы линейных дифференциальных уравнений (7.5) и она существенно упростится, а при шарнирном опирании вообще распадается на отдельные уравнения. В расчетной практике весьма редко используют два и более членов ряда (7.2), ограничиваясь только первым приближением. Связано это с высокой точностью получаемых результатов, вследствие, как представляется, незначительного расхождения между приближенной схемой и реальным объектом. Формально это выражается в надлежащем выборе функции Х х). Чем точнее она описывает какой-либо параметр в направлении оси ОХ, тем меньше погрешность результата.  [c.392]

Сведение трехмерных краевых задач теории упругости к двухмерным краевым задачам теории оболочек — один из основных вопросов в теории оболочек. При выводе соотношений для деформаций тонкой оболочки часто применяется гипотеза Кирхгофа—Лява, согласно которой а) прямые волокна оболочки, нормальные к координатной поверхности оболочки, остаются прямыми и нормальными к ней и после деформации б) нормальные к срединной поверхности волокна не испытывают удлинения.  [c.9]

В 78, 79 был изложен один из общих методов решения основных граничных задач плоской теории упругости для односвязных областей. В настоящем отделе мы даем краткие сведения о некоторых других общих методах (пригодных также для многосвязных областей), ограничиваясь лишь теми, которые либо представляют собой обобщение методов, изложенных в предыдущих отделах настоящей главы, либо так или иначе тесно связаны с ними.  [c.357]

Скажем еще несколько слов (опять, к сожалению, только общих) о методах непосредственного расчета статистических величин. О ручном счете здесь, естественно, не может быть и речи. В ЭВМ закладываются сведения законы взаимодействия частиц друг с другом, их число, начальные условия, соответствующие-механической постановке задачи, свойства границ системы и т. д., — и машина решает соответствующую этим данным задачу механики, постоянно держит в своей памяти сведения о микроскопическом состоянии каждой из частиц системы в последующие за начальным моментом интервалы времени, может сосчитать необходимые средние, выдать график какой-либо функции типа корреляционной Р2 В) и т.д. Такой способ получения результатов теперь часто называют методом молекулярной динамики. Если двадцать лет назад машинный расчет системы из сотни частиц типа упругих шаров производил впечатление чуть ли не чуда, то теперь, когда машины решают значительно более сложные задачи со значительно большим числом частиц и при этом еще выдают как последовательные кадры мультфильма спроектированные на плоскость изображения расположений частиц в исследуемой системе через определенные заданные интервалы времени (такие живые картинки особенно интересны в кинетических задачах), удивляет уже не это техническое чудо, поражает совпадение получаемой информации с предсказаниями теории, так как каждый получаемый с помощью ЭВМ результат с удивительной настойчивостью каждый раз подтверждает основные принципы статистической механики.  [c.295]


Во второй части книги мы рассмотрим акустические волны в твердых телах, характеризующихся различными физическими свойствами — упругой анизотропией, пьезоэффектом, наличием носителей электрического заряда, магнитоупругостью, внутренней структурой и т. д. Однако, прежде чем переходить к изучению такого рода сложных систем, естественно ознакомиться с наиболее простым случаем — классическим идеально упругим изотрот ым твердым телом (диэлектриком). Под идеально упругим будем подразумевать твердое тело, в котором отсутствуют пластические деформации. Иными словами, при снятии силовой нагрузки тело приходит в первоначальное состояние (отсутствие механического гистерезиса). Феноменологически такое тело может быть описано в рамках теории упругости — хорошо разработанного раздела механики сплошных сред (см., например, 1]). Ниже приведены основные сведения из теории упругости, необходимые для понимания дальнейшего изложения. Несмотря на то, что в настоящей главе мы ограничимся рассмотрением волн бесконечно малой амплитуды в рамках линейной акустики, Б целях методического единства здесь приведены и некоторые сведения из нелинейной теории упругости изотропных твердых тел.  [c.188]

Основные соотношения классической теории упругости Линейиая классическая теория базируется на ряде гипотез, основными из которых являются предположения о сведении системы сил, действующих на элементарную площадку, только к рав недействующей (отсутствие моментов), о малости градиентов перемещений (линей пая связь между деформациями и перемещениями), об идеальной упругости материала (линейная связь между напряжениями и деформациями)  [c.137]

Конечно, Герц не имел, как имели мы здесь, уже готового предположения о распределении давления по поверхности плитки, при знании которого ему оставалось бы только доказать правильность решения. Он по этому вопросу не делал никаких предварительных предположений и нашел закон распределения давлений лишь в результате своих исследований. Герц пришел к своему результату, опираясь на то, что решение основных уравнений упругого равновесия может быть получено при помощи теории потенциала притягивающих или отталкивающих масс. Если представить себе, что между обоими телами помещен трехосный эллипсоид равномерной плотности, у которого ось, идущая в направлении нормали касательной плоскости, в сравнении с осями, расположенными в площадке сжатия, бесконечно мала, то для сил притяжения масс этого эллипсоида, подчиняющихся закону тяготения Ньютона, можно вычислить потенциал в виде функции от координат ауфпункта ) и для такого потенциала уже давно была выведена готовая формула. Как можно показать, не только сами составляющие сил притяжения, вычисляемые по соответствующим формулам, но и функции, получаемые из них путем диференцирования или интегрирования по координатам, будут представлять решения основных уравнений теории упругости, и вся задача заключается лишь в том, чтобы составить из них такое решение, которое удовлетворяло бы одновременно всем граничным условиям, относящимся к напряжениям и деформациям. Это и удалось сделать Герцу. Кто захотел бы ознакомиться с теорией сжатия упругих тел по оригинальным работам Герца, тот должен иметь соответствующие предварительные сведения из теории потенциала.  [c.230]

В настоящей главе приводится краткая сводка основных положений, понятий и терминов из нелинейной теории упругости, которые необходимы при проведении по еле довательной линеаризации определяющих соотношений динамики предварительно напряженных тел в окрестности их некоторого начального напряженного состояния, а также для цельности и прозрачности изложения линеаризованной теории динамических контактных задач для предварительно напряженных сред. Сведения носят справочный характер и не претендуют на полноту и по с л е д овате льно сть.  [c.10]

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ, наука, которая охватывает теорию деформаций, общие сведения о материалах, гл. обр. о металлах, и указывает также общие методы расчета мащин и сооружений. С. м. служит вводной наукой во всех областях инженерного образования в строительной технике С. м. вводит в статику сооружений, в машиностроении С. м. предваряет все расчетные курсы—двигателей,станков, грузоиодъемных устройств, котлов и пр. в других отраслях техники, в архитектуре и художественной деятельности С. м. формирует и рационализирует внешние вырая ения творческих идей и композиций. В настоящее время теория С. м. разделяется на три основные части а) С. м. (в элементарном изложении), б) прикладная теория упругости и в) теория упругости. Предмет ведения, объем вопросов и глубина их изложения распределены между С. м., теорией упругости и прикладной теорией упругости недостаточно определенно. Наблюдается постоянное перемещение материала из одной части в другую и взаимное влияние их методологии. Все же следует принять, что С. м. представляет первый концентр познаний инг/кенера относительно общих свойств материалов и наиболее простых методов изучения их работы в конструкциях. Прикладная теория упругости вклкЛает в свой объем у ке более сложные проблемы и, отказываясь во мыощх случаях от строгой формы их изложения, стремится дать практич. применение решений в различных отраслях техники. Теория упругости развивается как отдел физико-математических наук и содержит решение наиболее сложных задач относительно упругого и пластического состоя-  [c.203]

Одной из основных целей при исследовании задач дифракции упругих волн на неоднородностях является получение не только формального математического рещения, а такого, с помощью которого можно было бы эффективно определить дифракционные поля деформаций и напряжений вблизи неоднородностей. В указанных трех традиционных направлениях отмеченная цель ие была достигнута. В последние годы в связи с созданием н применением ЭВМ наметились два направления, по которым проводятся исследования задач дифракции упругих волн на неоднородностях с целью определения динамической напряженности вблизи неоднородностей. Первое направление связано с развитием численных методов при соответствующей дискретизации задач и с применением ЭВМ на всех этапах рещения задач. Развитие этого направления в силу универсальности его алгоритмов, по-видимому, в будущем обеспечит возможность исследования весьма щироких классов задач. Все же основные результаты, полученные за последние годы в СССР и США, относятся ко второму направлению, которое связано на первом этапе рещения задач с применением аналитических методов (метода разделения переменных и его обобщений, методов теории возмущений, метода сведения к интегральным уравнениям после неполного разделения переменных и т. д.) и на заключительных этапах рещения — с применением ЭВМ. В этом направлении в настоящее время уже исследованы достаточно щирокие классы задач и опубликованы две обобщающие монографии по отдельным аспектам рассматриваемой проблемы [44] —по дифракции упругих волн в многосвязных телах (на нескольких полостях) н [125] — по дифракции упругих волн в односвязных телах (на одной полости). Создание же обобщающей монографии, относящейся ко всем основным аспектам рассматриваемой проблемы (в рамках второго направления), представляется в настоящее время целесообразным, так как уже исследованы достаточно щирокие классы задач. Предлагаемая вниманию читателей монография является попыткой реализации такого замысла, хотя при ее написании в значительной мере были использованы результаты авторов и их коллег, полученные в Институте механики АН УССР за последние 10—15 лет.  [c.6]



Смотреть страницы где упоминается термин Основные сведения из теории упругости : [c.182]    [c.5]    [c.90]   
Смотреть главы в:

Введение в физическую акустику  -> Основные сведения из теории упругости



ПОИСК



Основные Основные сведения

Основные сведения

Основные сведения из нелинейной теории упругости

Основные сведения из теории

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте