Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Спектр и геометрический род

Реализация автоматизации этого метода оказалась достаточно трудной (в логическом плане) задачей при расчете сетки в много связных областях со сложной топологией, ко гда в области присутствуют разрезы и щели, на которых также необходимо обеспечить движение узлов сетки. Приходится анализировать большой спектр геометрических воз можностей стыковок блоков. Решение же этой задачи позволило существенно сократить объем входных данных, повысить качество рассчитываемых сеток.  [c.527]


Следует заметить, что призмы ставятся в положение минимума отклонения, строго говоря, только для одной какой-то длины волны. Для других длин волн установка призмы всегда оказывается вне минимума отклонения и в ряде случаев следует учитывать изменение углового увеличения призмы по спектру. Геометрическая ширина спектральных линий s будет определяться  [c.74]

Согласно тем же данным, спектр у-излучения смеси продуктов деления при Т=720 дней и =360 дней для эффективных энергий 1 = 2,25 Мэе, 2=1,56 Мэе и .3 = 0,76 Мэе равен П1 = 5%, П2=1,4% и Пз=86,4% соответственно. Результаты расчета поправочных коэффициентов Ы1, эффективных удельных у-эквивалентов Qi и толщины защиты di приведены в табл. 11.2. Входные геометрические параметры к = к1Я = 2 и р = а/к=, 1X3/1 = 00 [см. табл. 13.8].  [c.332]

Значение закона самоорганизации структур вдали от равновесия подчиняющегося, как и в живой природе, закону геометрической прогрессии, позволяет проводить анализ структур по данным спектрального анализа с использованием двух спектров один из них является спектром характеристических час-  [c.217]

Подсчет числа нейтронов производился по количеству зарегистрированных протонов отдачи с учетом сечения (п—р)-рассеяния для нейтронов спектра деления и геометрических факторов эксперимента.  [c.378]

На характеристики сигнала (частотный спектр, амплитуду и т. д.) влияет форма, глубина залегания дефекта, его ориентация и геометрические размеры.  [c.195]

Предварительно оценивают получаемую щирину исследуемой линии и сравнивают ее с величиной спектральной щирины щели. Спектральную щирину щели находят теоретически, исходя из размеров геометрического изображения щели и дифракции на действующем отверстии прибора (см. задачу 1). Оценка спектральной щирины щели может быть также сделана по тонким линиям железа. В последнем случае будут учтены все факторы, в том числе качество изображения спектра в приборе и аппаратная функция фотослоя.  [c.276]

Поскольку размеры вихрей в турбулентном потоке определяются геометрическими размерами канала, то частотный спектр пульсаций скорости зависит от размеров канала. При прочих равных условиях средняя частота пульсаций обратно пропорциональна квадрату радиуса канала (n p Rev/ ). Поэтому при исследовании турбулентных потоков в каналах малого диаметра необходимо использовать высокоточную малоинерционную аппаратуру, способную регистрировать высокие частоты пульсаций.  [c.270]

Геометрическую картину движущейся жидкости в виде семейства линий тока, дающую представление о характере движения, называют спектром течения.  [c.62]


Эффективность применения ОН К существенно зависит от правильности выбора геометрических, спектральных, светотехнических и временных характеристик условий освещения и наблюдения ОК. Главное при этом — обеспечить максимальный контраст дефекта подбором углов освещения и наблюдения, спектра и интенсивности источника (непрерывного или стробоскопического), а также состояния поляризации и степени когерентности света. Необходимо учитывать различия оптических свойств дефекта и окружающей его области фона Контраст определяют по формуле  [c.50]

Излучаемая в окружающее пространство акустическая мощность шума пограничного слоя на обтекаемых поверхностях подчиняется тем же законам, что и акустическая мощность вихревого шума, т. е. пропорциональна шестой степени скорости потока и квадрату геометрических размеров поверхности. Спектр этого шума непрерывен в широкой полосе частот.  [c.150]

Интегральный метод вынужденных колебаний применяют для определения модуля упругости материала по резонансным частотам продольных, изгибных или крутильных колебаний образцов простой геометрической формы, вырезанных из изделия, т. е. при разрушающих испытаниях. Последнее время этот метод используют для неразрушающего контроля небольших изделий абразивных кругов, турбинных лопаток. Появление дефектов или изменение свойств материалов определяют по изменению спектра резонансных частот. Свойства, связанные с затуханием ультразвука (изменение структуры, появление мелких трещин), контролируют по изменению добротности колебательной системы. Интегральный метод свободных колебаний используют для проверки бандажей вагонных колес или стеклянной посуды по чистоте звука.  [c.102]

При моделировании работы таких конструкций, в частности лопаток газовых турбин, ввиду сложности механических и физикохимических процессов трудно использовать рекомендации теории подобия и теории размерностей, поскольку при этом приходится сталкиваться с противоречивыми требованиями. В предыдущей главе отмечалось, что в этом случае следует стремиться к тождественности тензоров напряжений и тензоров деформаций в сходственных зонах геометрически подобных тел. Наиболее надежные результаты можно было бы получить при соблюдении тождественности граничных условий теплообмена и механического нагружения на моделях, изготовленных из реального материала тех же размеров, что и натурная деталь, например лопатка. Другими словами, наиболее надежные данные о несущей способности и долговечности таких деталей, как лопатки газовых турбин, можно получить, если испытывать реальные лопатки в условиях, воспроизводящих реальные спектры силовых и тепловых нагрузок в подвижных средах, имеющих тождественные термодинамические параметры и одинаковый химический состав. Однако это не всегда осуществимо, поскольку для такого моделирования требуются капитальные затраты.  [c.187]

Геометрическая неточность изготовления в наибольшей степени проявляется в кинематических парах насосов. Эти неточности являются причиной как широкополосных, так и дискретных спектров вибрации.  [c.176]

Природа возникновения вибрации в подшипниках качения очень сложна, так как она зависит от множества причин. Вибрация внешнего кольца создается, в основном, двумя видами источников циклическими изменениями податливости элементов подшипника при нагрузке (эти вибрации имеют место даже в случае геометрически идеальных форм элементов) и геометрическими несовершенствами элементов подшипника. Порождаемые этими причинами вибрации имеют широкий спектр, состоящий как из дискретных составляющих (кратных частоте вращения, произведению частоты вращения на число элементов качения и  [c.249]

Спектр частот, порождаемых геометрическими несовершенствами элементов подшипников, очень широк и насыщен. Наиболее резко на характере спектра сказываются геометрические погрешности тел качения, затем внутреннего кольца и потом — наружного. Геометрические погрешности обусловлены технологией изготовления подшипников. Одним из характерных видов погрешности беговых дорожек и тел качения является волнистость.  [c.251]


Аналитическое выражение значений расхода представляет полный спектр колебаний потока на выходе гидромашины. Однако оценка пиковых значений расхода по этим выражениям затруднена тем, что возможны разрывные функции. В частности, для процесса, описывающего поток в идеализированной машине, такие разрывы функции расхода появляются от синусных составляющих нечетных s и косинусных составляющих четных s потоков qm- Сходимость рядов к среднему значению в точках разрыва, усугубленная явлениями Гиббса, затрудняет точное определение пиковых значений Q, совпадающих с точками разрыва. Верной оценке неравномерности способствует геометрическое представление процесса образования потока в объемных гидромашинах. Формирующие потоки могут быть представлены звездой векторов (рис. 23, а, 24, й). Для первой гармоники кинематические фазы в звезде совпадают с углом геометрического расположения векторов. Золотниковый распределитель отсекает и суммирует в поток векторы, расположенные по одну  [c.211]

В литературе по -с-дефектоскопии большое внимание уделяется вопросам чувствительности радиографического метода, основанного на применении 7-излучения искусственных радиоактивных изотопов. Теоретические работы, учитывающие влияние геометрических факторов (мощность источника излучения и его энергетического спектра, плотность почернения 7-снимка, а также рассеянное излучение), хотя и дают возможность установить благоприятные для повышения чувствительности условия просвечивания, но носят весьма приближенный характер.  [c.342]

В рассматриваемый период произошли также и структурные изменения в технической оптике. Вплоть до конца XIX в. существовало мнение, что общая теория оптических систем, составляющая основу технической оптики, сводится лишь к геометрической оптике. Многие ученые-оптики считали, что теория оптических систем основана на двух-трех положениях (аксиомах) геометрической оптики, из которых дедуктивным образом могут быть получены все свойства этих систем. Однако по мере того, как расширялась область применения оптических систем и возникала настоятельная потребность в создании оптических систем с высоким качеством изображения, становилось необходимым учитывать также аберрации, возникающие вследствие явления дифракции. Знания законов только геометрической оптики оказалось недостаточным и возникла необходимость использования законов физической оптики. Кроме того, расширение областей применения оптических систем в условиях темповой адаптации и в крайних областях спектра (ультрафиолетовой и инфракрасной), так же как и вопросы, связанные с оценкой качества изображения, потребовали более глубокого знания свойств зрительного аппарата, т. е. возникла потребность и в привлечении законов физиологической оптики для проектирования и расчета оптических систем.  [c.370]

В заводских условиях на работающий станок действует широкий спектр частот возбуждающих колебаний (резание, ковка, другие технологические процессы), значительно различающихся по величине и направлению. Близость или совпадение с частотой возбуждающих колебаний даже одной из шести частот какой-либо детали, узла или всего станка в целом приводит к неоправданно быстрому снижению точности и производительности станка, уменьшению срока его службы. Четкое распределение объемов и масс вокруг основной принятой геометрической оси станка приводит к созданию простых монолитных форм и, как следствие, к сужению ширины спектра частот собственных колебаний всего станка в целом.  [c.87]

Среди методов экспериментального исследования радиационного теплообмена важное место занимает метод светового моделирования [Л. 27, 69, 149, 150, 156, 181 —183, 186—191, 386—389]. Физическая сущность этого метода заключается в аналогии законов переноса излучения для видимой части спектра и для всех других частот. Математически такая аналогия выражается в идентичности уравнений, описывающих процессы радиационного обмена во всем диапазоне частот. Поэтому, создав световую модель подобной образцу в отношении собственного излучения, а также геометрических характеристик среды и поверхности, можно быть уверенным  [c.297]

Для анализа отклонений геометрических параметров профиля контур сечения действительной поверхности можно характеризовать спектром —совокупностью гармонических составляющих отклонений профиля, определяемых спектром фазовых углов и спектром амплитуд, т. е. совокупностью отклонений с различной частотой. Для представления  [c.350]

Анализ спектря геометрических характеристик позволяет выявить доминирующие гармоники, а соответствующие им по частоте  [c.169]

Угол 0 — угол вьпода лучей из интерферометра При малом О он связан с координатой у соотношением у = М[в, где f— фокусное расстояние лиизы проектирующей полосы на щель, а Л1 — увеличение спектрографа Далее, свячано с координатой х зависимостью f (х) к , где функция F характеризует дисперсию спектрографа Исключая с помощью этих соотношений A и 0 иэ (51), мы получим для источника с непрерывным спектром геометрическое место  [c.310]

Однако наряду с несомненными достоинствами применение трафаретов и метода аппликации связано в общем случае с рядом существенных трудностей для конструктора, которые ограничивают применение этих средств. Здесь можно выделить две основные причины. Во-первых, увеличение геометрической сложности трафаретов и аппликационных фрагментов, из которых компонуется чертеж, уменьшает возможную область их применения, т.е. класс чертежей, создаваемых с их помощью. Например, шестиугольный трафарет нельзя использовать для создания восьмиугольника Другими словами, в этом случае расширение класса реализуемых чертежей связано с увеличением числа различных геометрических типов используемых конструктором трафаретов или аппликационных фрагментов. Например, наряду с правильными шестиугольными трафаретами могут потребоваться правильные восьми- и двенадцатиугольные. Вторая причина, ограничивающая применение трафаретов и аппликацоинных фрагментов, связана с тем, что конструктор не может в случае необходимости изменять их размеры в процессе работы. Эта проблема решается путем создания спектра геометрически однотипных трафаретов и фрагментов, имеющих разные размеры. Например, изготавливаются шестиугольные трафареты, соответствующие по диаметру всем используемым в машино строении болтам с шестигранной головкой. Следствием такого решения также является увеличение общего числа трафаретов и фрагментов, используемых конструктором.  [c.8]


В ИАЭ им. И. В. Курчатова и МО ЦКТИ им. И. И. Ползу-нова были выполнены оптимизационные расчеты по выбору геометрических размеров и относительной толщины покрытия из карбида кремния микротвэлов реактора БГР-1200. При увеличении толщины покрытая увеличивается глубина выгорания ядерного горючего, но происходит смягчение спектра нейтронов и уменьшение коэффициента воспроизводства. Оптимальная относительная толщина покрытия из карбида кремния, обеспечивающая достижение минимального времени удвоения лет), для сердечников из карбида уран—плутония получилась равной 0,05—0,07 диаметра сердечника [25].  [c.38]

Если бы уровни энергии в действительности являлись геометрическими линиями, то атомы излучали бы строго монохроматическую волну и спектр был бы строго линейчатым (дискретным). Одиако, как показывают опыты, атомы излучают спектр частот определенной ширины. Уширение спектральной линии, согласно квантовой теории, объясняется тем, что сами энергетические уровни обладают некоторой шириной Дт, величина которой определяется так называемым соотношением неопределенностей Гейзенберга AojT h, где т — время жизни атома на энергетическом уровне шириной А(о, h — постоянная Планка. Из этого соотношения вытекает, что Асо /г/т, т. е. естественная ширина линий, согласно квантовой теории, обратно пропорциональна времени жизни атома в начальном состоянии.  [c.41]

К. Бутусов в 1978 году рассчитал средние периоды обращения планет Солнечной системы и сопоставил их с геометрической прогрессией со знаменателем, равным золотой пропорции. Получилось очень точное соответствие (оп1ибка около 4%). Из сопоставления величин видно, что отношение периодов вращения планет вокруг Солнца равны либо Ф, либо Ф . Частоты обращения планет и их разности образуют спектр, подчиненный золотой пропорции [5]. К. Бутусов приходит к выводу, что спектр гравитационных и акустических возмущений, создаваемых планетами, является наиболее совершенным из всех возможных вариантов. Ученый математически доказал, что при резонансе волн  [c.164]

Заканчивая этот краткий обзор различных электромагнитных волн, следует отметить разницу между физической оптикой, изучению которой посвящена эта книга, и физиологической оптикой, не рассматриваемой здесь. В некоторых случаях различие между ними очевидно если ввести в дугу соль натрия и разложить ее излучение в спектр призмой или дифракционной решеткой, то мы увидим на экране ярко-желтый дублет. То, что длины волн этих линий равны 5890—5896 А, нетрудно установить измерениями, целиком относящимися к методам физической оптики. Но вопрос о том, почему эти линии кажутся нам желтыми, нельзя решить в рамках этой науки, и он относится к физиологической оптике. Конечно, проведение столь четкой границы между ними дЕ1леко не всегда возможно, и иногда трудно решить, имеем ли мы, например, дело с истинной интерференционной картиной или с кажущимися глазу полосами, возникновение которых связано с явлением контраста, и т. д. Некоторые интересные данные по физиологической оптике содержатся в лекциях Р.Фейнмана, который счел возможным сочетать изложение этих вопросов с основами физической и геометрической оптики.  [c.14]

Интервал спектра АЯсп, занимаемый геометрическим изображением щели (1.13), называется спектральной шириной щели  [c.19]

Для решения этой задачи необходимо в первую очередь оценить на основании законов старения степень или скорость повреждения тех элементов, которые определяют значение выходного параметра. При этом математическое ожидание и дисперсия процесса оцениваются с учетом спектра нагрузок и режимов работы. Одновременно на основании данных о конструкции основных элементов машины и общей компоновки ее узлов определяются начальные параметры изделия — его геометрическая точность, жесткость, влияние быстро протекающих процессов и процессов средней скорости на параметры изделия. Обычно не все эти показатели могут быть получены расчетным путем. Так, например, методы расчета, связанные с виброустойчивостью и с тепловыми деформациями сложных деталей и узлов, еще недостаточно разработаны. В этом случае следует использовать данные аналогов, производить моделирование процессов на макетах или задаваться допустимой их величиной. В последнем случае при окончательной отработке конструкции изделия всегда могут быть приняты меры для доведения данного параметра до требуемого у зовня.  [c.201]

Различные эллипсы с одним и тем же главным квантовым числом имеют одинаковую энергию, пока нет никаких возмущающих сил. В случае какой-нибудь внешней возмущающей силы, например внешнего магнитного поля эллиптические орбиты с одной и той же энергией, но различной геоме трической формы будут возмущены различно и это должно определенным образом сказаться на спектре. То же имеет место и в случае возмущающей силы внутриатомнога происхождения. Такая сила существует в атомах, где вокруг ядра движется более одного электрона. Тогда для каждого данного электрона эллиптические орбиты различной геометрической формы различно возмущены остальными электронами. Как мы увидим ниже, эта причина объясняет существование у щелочных металлов различных серий.  [c.34]

Измерительный тракт должен быть протарирован учреждением Государственного комитета стандар тов, мер и измерительных приборов Тарировка приборов должна прово диться не реже одного раза в год Поправки определяются на средне геометрических частотах исследуемого спектра. Общая неравномерность частотной характеристики измерительного тракта, например микрофона, шумомера и анализатора, определяется как сумма (с учетом знака) неравномерностей характеристик отдельных приборов.  [c.34]

М. М. Тененбаум и Д. Б. Бернштейн установили, что вследствие разнообразия геометрических и прочностных характеристик абразива в поверхностном слое материала при трении реализуется спектр контактных напряжений, параметры которого могут изменяться в широких пределах [65]. При этом в зависимости от уровня напряжений и частоты их повторений на поверхности материала могут протекать процессы разрушения прямого (вязкого и хрупко-  [c.13]

ШеМйи коэффициента затухания, точность определения которого достигает 15—20%, хотя его относительное изменение в зависимости от изменения прочности стеклопластика значительно превышает относительное изменение скорости. То же самое можно отметить и в отношении интенсивности ультразвуковой энергии и частотного спектра импульса. На эти параметры оказывают значительное влияние состояние поверхности изделия, контакт преобразователей с поверхностью материала, явления интерференции и дифракции упругих волн в материале из-за геометрических характеристик изделия. Поэтому па данном этапе развития акустических методов, на наш взгляд, наиболее целесообразным является использование скорости распространения упругих волн.  [c.85]

Дунин-Барковский И. В. О расчете режимов чистового точения и геометрических параметров резца по заданному из эксплуатационных соображений спектру профиля поверхности детали. — В кн. Исследования в области механической обработки металлов. М., Оборонгиз, 1962, вып. 53, с. 47—100 (Труды МАТИ).  [c.248]

Авторегулируемые насосы наиболее полно отвечают задачам испытательной техники в части энергетического согласования источника гидравлической энергии с потребителем. Однако в процессе регулирования на геометрическую (в стационарных условиях) неравномерность подачи накладывается динамическая неравномерность. Последняя зависит от способа регулирования производительности вращением ротора относительно направляющей Фф = Ф2 — Фз1 изменением эксцентриситета г направляющей поворотом золотника относительно ротора Фа = Ф1 — Фг изменением дуговой протяженности а отсека. Качество регулирования оценивают по спектру наложений на гармонический отклик (изменение потока в отсеке) при гармоническом изменении входной величины.  [c.215]


Широкое распространение форм симметрии в природе и технике в своей основе объясняется тем, что при всех иных условиях тело, обладающее весовой и геометрической симметрией, имеет суженный спектр частот собственных колебаний, что соответствует большей устойчивости, жизнестойкости тела и OipraHH3Ma. Симметрия—это первичный признак организованной материи, и перенесение его в технику, т. е. в какой-то степени копирование природы, может быть отнесено к одному из основных принципов проектирования современной техники — принципу бионическому.  [c.53]

Сформулировадные закономерности самоорганизации объясняют происхождение и, более того, необходимость присутствия симметрии в живой и неживой природе. При всех иных условиях тело, обладающее весовой и геометрической симметрией, имеет суженный спектр частот собственных колебаний, что соответствует большей устойчивости, жизнестойкости тела и организма. Характер симметрии (осевая, плоскостная, точечная и др.) будет зависеть от направления действия той части спектра частот возбуждающих колебаний, которая обладает большей энергией. Так как действия этих участков спектра частот возбуждающих колебаний могут варьировать во времени и направлении, то каждому из этих вариантов  [c.93]


Смотреть страницы где упоминается термин Спектр и геометрический род : [c.119]    [c.171]    [c.196]    [c.214]    [c.38]    [c.254]    [c.650]    [c.342]    [c.466]    [c.156]    [c.30]    [c.100]   
Смотреть главы в:

Динамические системы - 6  -> Спектр и геометрический род



ПОИСК



Геометрическое строение из вращательно-колебательных спектро

Геометрическое строение из колебательных спектров

Спектры при измеиеиии формы стержней с двумя геометрическими параметрами

Спектры при измеиеиии формы стержней с одним геометрическим параметром



© 2025 Mash-xxl.info Реклама на сайте