Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ТЕРМОДИНАМИКА И КИНЕТИЧЕСКАЯ ТЕОРИЯ Законы термодинамики

С именем Кирхгофа связано также установление зависимости теплового эффекта химической реакции от температуры. Уравнение, которое устанавливает эту зависимость, называется законом Кирхгофа (1858). Кирхгофу принадлежат и другие исследования в области кинетической теории газов, термодинамики и термохимии.  [c.567]

Свойство энтропии возрастать в необратимых процессах, да и сама необратимость находятся в противоречии с обратимостью всех механических движений и поэтому физический смысл энтропии не столь очевиден, как, например, физический смысл внутренней энергии. Максимальное значение энтропии замкнутой системы достигается тогда, когда система приходит в состояние термодинамического равновесия. Такая количественная формулировка второго закона термодинамики дана Клаузиусом, а ее молекулярно-кинетическое истолкование Больцманом, который ввел в теорию теплоты статистические представления, основанные на том, что необратимость тепловых процессов имеет вероятностный характер.  [c.76]


Термодинамическая теория (феноменологический подход) и молекулярно-кинетическая теория (статистический подход) могут использоваться для исследования одних и тех же физических явлений, они стоят рядом и дополняют друг друга. Термодинамическая теория обладает следующим достоинством она не использует никаких гипотез о микроскопическом строении вещества, поэтому ее метод не зависит от новых открытий микрофизики закономерности термодинамики достоверны в такой же мере, в какой достоверны ее основные законы, например закон о сохранении энергии.  [c.6]

Рассмотрим явление теплообмена с точки зрения строения газа. При соприкосновении двух газов (через разделяющую их тонкую перегородку), имеющих разные температуры, мы всегда наблюдаем переход тепла от газа с высокой температурой к газу с низкой температурой. И это соответствует второму закону термодинамики. С точки зрения кинетической теории газов происходит это потому, что средняя кинетическая энергия молекул первого газа выше средней кинетической энергии молекул второго газа и в общем при столкновениях первые передают часть своей энергии вторым.  [c.103]

Молекулярную сущность тепловых явлений позволяет выяснить молекулярно-кинетическая теория теплоты, носящая название статистической физики (или статистической термодинамики), которая оперирует законами механики и теории вероятности. При изучении тепловых явлений термодинамика и статистическая физика дополняют одна другую.  [c.8]

Хотя прогресс, достигнутый благодаря использованию предложенного Больцманом подхода, поразителен, остается немало и нерешенных вопросов [13]. Во-первых, мы сталкиваемся с чисто практическими трудностями, возникающими, например, при желании использовать выведенные Больцманом уравнения для решения более общих задач (например, возникающих при изучении поведения газов большой плотности). За последние несколько лет кинетическая теория достигла выдающихся успехов. Тем не менее если мы внимательно проанализируем публикации, посвященные современной кинетической теории газов или статистической механики неравновесных систем, то не найдем в них ничего, что было бы похоже па, У/ -теорему Больцмана, хотя эта теорема остается справедливой для более общих случаев. Результат, полученный Больцманом, остался изолированным, что противоречит той общности, которую мы приписываем второму закону термодинамики.  [c.145]

Считая необоснованным практикуемое иногда в курсах технической термодинамики изложение ряда вопросов статистической физики и молекулярно-кинетической теории газа, авторы ограничились лишь кратким рассмотрением статистического смысла второго закона.  [c.4]


Несмотря на то, что свойства газов наиболее полно раскрываются лишь с учетом их молекулярного строения, при изучении движения газовых потоков можно считать, что эти свойства не зависят от малости рассматриваемого объема, т.е. считать допустимым использование дифференциального исчисления. Такое допущение позволяет ввести понятие сплошной среды и применять ее законы для изучения движения газов. Таким образом, газовая динамика является одним из разделов механики сплошной среды и в своей теоретической части базируется на общих законах и уравнениях термодинамики и гидромеханики, на представлениях кинетической теории газов, на общих фундаментальных законах физики и теоретической механики. Отсюда вытекает тесная связь газовой динамики со смежными дисциплинами, которые изучаются студентами в институте.  [c.3]

В этой главе мы выведем уравнение полной энергии, начав с обзора (п. 30—32) тех результатов классической термодинамики, которые нам понадобятся в дальнейшем. Мы рассмотрим, в частности, основные законы, описывающие изменения термодинамической системы, фазы которой имеют постоянную массу и фиксированное уравнение состояния. Прежде чем перейти к деталям, следует заметить, что мы не ставим перед собой задачу (это выходило бы к тому же за рамки данной статьи) физического обоснования логической структуры термодинамики. Укажем лишь, что такого рода обоснование мы находим в законах Клаузиуса и Кельвина, результатах кинетической теории и статистической механики  [c.87]

Адиабатный процесс истечения газа включает в себя понятие о располагаемой работе, поэтому предварительно рассмотрим эту работу. В параграфе 12. 1 отмечалось, что в основе теории газового потока лежит первое начало термодинамики. Как известно, основное уравнение первого закона термодинамики (4. 5) или (4. 6) выражает равенство энергий для процессов, в которых тело не имело видимого движения в пространстве и, следовательно, не обладало кинетической энергией. Для процессов, в которых тело перемещается в пространстве с некоторой переменной скоростью хю, а следовательно, обладает кинетической энергией видимого движения, уравнение  [c.241]

В разделе Основы кинетической теории газа , данном в приложении к курсу термодинамики, прежде всего говорится о соответствующих общетеоретических соотношениях с выводом основного уравнения кинетической теории газа, затем на его основе доказываются общие газовые законы Бойля, Гей-Люссака и др. и, наконец, рассматривается вопрос о вероятности и энтропии.  [c.152]

В приложении к первой части учебника излагается общая кинетическая теория газов (15 страниц). В этом разделе, построенном на уровне курса физики, рассматриваются вопросы скорость молекул закон Максвелла давление газа законы Авогадро, Гей-Люссака п Дальтона теплоемкость газов число столкновений п средняя свободная длина пути молекул теплопроводность газов внутреннее тре-Н1 е газов величина и число молекул. Принимая во внимание, что курс физики предшествует курсу термодинамики, можно было бы в учебнике по термодина ике этих данных не приводить, тем более в конце учебника.  [c.201]

Несколько слов надо сказать о другой особенности некоторых учебников того периода. Дело в том, что в эти учебники стали включаться данные, непосредственно относящиеся к общим курсам физики, в которых они обычно обстоятельно и подробно излагаются. Например, общие основы кинетической теории веществ с подробными выводами ее основных соотношений, которые в дальнейшем ири выводе различных соотношений термодинамики обычно даже не используются. В них стали приводиться, также на основе кинетической теории, доказательства законов идеальных газов Бойля — Мариотта, Гей-Люссака, Авогадро, Дальтона и др. Все эти данные являлись по существу повторением в учебниках по технической термодинамике тех положений, которые должны быть хорошо известны студентам из курса физики.  [c.224]


Все здесь сказанное нисколько не отрицает необходимости использования данных кинетической теории и ее следствий, но это надо делать только тогда, когда это действительно является целесообразным. В отдельных же случаях использование данных этой теории при изложении термодинамики является даже необходимым. Огромное значение, как известно, имеют основы кинетической теории вещества при изложении второго закона термодинамики и некоторых других ее положений. Но это нисколько не означает, что в курсах технической термодинамики надо заниматься изложением и обоснованием основных положений этой теории.  [c.225]

В гл. 2 (100 страниц) Калорическое уравнения состояния рассматриваются вопросы первый закон термодинамики количество теплоты удельные теплоемкости скрытая теплота тепловые эффекты механическая работа эквивалентность работы и теплоты принцип сохранения энергии внутренняя энергия калорическое уравнение состояния с эмпирической и термодинамической точек зрения простые однородные вещества (газы, жидкости, твердые тела, сложные системы) внутренняя энергия и теплоемкость с точки зрения кинетической теории.  [c.256]

Молекулярно-кинетическое истолкование первого начала термодинамики, закона сохранения энергии, было первоначально основной идеей кинетической теории материи. Главной заслугой Больцмана является молекулярно-кинетическое истолкование второго начала термодинамики и установление статистического смысла понятия энтропии.  [c.11]

Непосредственно перед началом изучения настоящего курса учащиеся заканчивают курс физики и уже знакомы с основными сведениями из молекулярно-кинетической теории строения вещества, со свойствами и законами идеальных газов. Поэтому соответствующие разделы учебника изложены кратко, с целью закрепления той части учебного материала из курса физики, которая имеет непосредственное отношение к термодинамике, газовой динамике и теплопередаче.  [c.3]

Развитая рядом ученых, начиная с М. В. Ломоносова, молекулярно-кинетическая теория вещества показывает, что в изложенной формулировке второй закон термодинамики относится к телам, состоящим из громадного числа молекул, т. е. к таким, которые находятся в непосредственно окружающей нас природе, и не может быть распространен на всю вселенную, атмосфера в которой сильно разрежена, а температуры низки. Опытами и теоретическим путем доказано, что в телах, состоящих из небольшого числа молекул, возможно самопроизвольное протекание процессов, которые в телах с громадным числом молекул сами по себе не протекают. Таким образом, распространение второго закона термодинамики на всю, вселенную незакономерно,  [c.88]

Термодинамика имеет свои преимущества и недостатки перед молекулярно-кинетической теорией вещества. Преимущество ее в том, что она не вводит никаких гипотез, и потому ее положения так же достоверны, как и законы, на которых она основана.  [c.6]

При этом возникает новый вопрос в каком смысле и в каких пределах справедлив второй закон термодинамики Мы обсудим этот вопрос при изучении кинетической теории (см. гл. 4, 4) и увидим, что второй закон термодинамики справедлив лишь, в среднем и в макроскопических явлениях отклонения от этого закона настолько редки, что во всех практических случаях ими можно пренебречь.  [c.30]

Клаузиус Рудольф Юлиус Эмануэль (1822-1888)-немецкий физик, прославившийся своими работами в области кинетической теории газов и термодинамики и прежде всего как автор второго начала термодинамики. Первым ввел в физику понятие энтропии. Необоснованно распространив на всю нашу Вселенную законы, справедливые лишь для термодинамически замкнутых систем. Клаузиус пришел к вьшоду о так называемой тепловой смерти Вселенной.  [c.242]

Химия подразделяется на общую химию [1]. [24]. [29], [44], [45], рассматривающую основные химические понятия и главнейшие химические законы неорганическую [29], [44], [45], изучающую все элементы и их химические соединения, кроме соединений углерода органическую [9], [33], [38], изучающую химические соединения, в которые входит углерод аналитическую, разрабатывающую теорию и практику качественного и количественного анализа физическою [3], [4], [б]. [7]. [8]. [11], [12], [16], [30] (теоретическую), рассматривающую химические явления с точки зрения законов термодинамики, молекулярно-кинетической теории и современных достижений в вопросе строения атомов и молекул коллоадиую химию, изучающую коллоидные системы и поверхностные явления на границе раздела фаз, и т. д.  [c.269]

Электрические заряды. Не все явления в природе можно понять и объяснить на основе использования понятий и законов механики, молекулярно-кинетической теории строения вещества и термодинамики. Достаточно обратить внимание на тот факт, что ни механика, ни молекулярнокинетическая теория, ни термодинамика ничего не говорят о природе сил, которые связывают отдельные атомы в молекулы, удерживают атомы и молекулы вещества в твердом состоянии на определенных расстояниях друг от друга. Законы взаимодействия атомов и молекул удается понять и объяснить на основе представления о том, что в природе существуют электрические заряды.  [c.128]

В учении о теплоте русская научная мысль намного опередила западно-европейскую. В середине XVIII в. М. В. Ломоносов создал молекулярно-кинетическую теорию теплоты. Свою теорию он изложил в работе Размышления о причине теплоты и холода (1750). Рассматривая всевозможные движения корпускул , Ломоносов пришел к выводу, что тепловые явления связаны с коловратным движением корпускул . Несмотря на ограниченность этого вывода, важным было утверждение того, что тепловые явления обусловлены движением молекул. Созданная им молекулярно-кинетическая теория теплоты привела его к открытию закона сохранения энергии и к качественным формулировкам законов термодинамики.  [c.6]


ПИЯ на термодинамику и кинетику окиеления и коррозии [100— 112]. Высказывались предположения, что механические напряжения влияют на скорости коррозии путем изменения формы кинетического закона [106], хотя такие представления и вызывают возражения [109]. Кроме того, некоторые теории [101] и экспериментальные наблюдения [35, 108] указывают на возможность ускорения коррозии вследствие разрушающего воздействия приложенного напряжения на поверхностную пленку коррозионных продуктов. Недавние исследования коррозии жаростойких сплавов Со—Сг—А1 и N1—Сг—А1 (без добавок и с добавками иттрия, улучшающими адгезию окисла [Ш]) показали, что, хотя деформация под действием высоких сжимающих напряжений может приводить к короблению и растрескиванию пленок АЬОз, степень последующего отслаивания и повторного окисления, т. е. кинетика окисления, существенно не изменяется [110].  [c.25]

Математическое моделирование, закон поверхностного разрушения твердых тел при трении в общем случае должны учитывать физические, химические, механические явления, контактную ситуацию, изменение геометрических характеристик твердых тел во времени, кинематику движения, структуру и состав поверхностных и приповерхностных слоев, образование химических поверхностных соединений, состояние смазочного слоя. Получение уравнений, характеризующих в общем случае процесс поверхностного разрушения при трении, должно базироваться на синтезе эксперимента и математических моделей, учитывающих физико-химические процессы, механику сплошных сред, термодинамику и материаловедческий аспект проблемы. Разрабатываемый теоретико-инвариантный метод расчета поверхностного разрушения твердых тел при трении основывается на уравнениях эластогидродинамической и гидродинамической теории смазки, химической кинетики, контактной задачи теории упругости, кинетической теории прочности и учитывает теплофизику трения, адсорбционные и диффузионные процессы. Цель данных исследований —в получении из анализа и обобщений экспериментальных результатов критериальных уравнений с широкой физической информативностью структурных компонентов, полезных для решения широкого класса практических задач и необходимых для ориентации в направлении постановки последующих экспериментальных работ. Исследования в данной области будут углубляться и расширяться по мере развития знаний о физико-химических процессах, г[ротекающих при трении, получения количественных характеристик и развития математических методов, которые обобщают опытные наблюдения.  [c.201]

В истории науки второй закон термодинамики сыграл выдающуюся роль, далеко выходящую за рамки явлении, для объяснения сущности которых он был предназначен. Достаточно упомянуть работы Больцмана в области кинетической теории, разработку Плавком квантовой теории и Эйнщтейном теории спонтанной эмиссии в основе всех этих достижений лежит второй закон термодинамики.  [c.123]

Вывел законов Т.н. п. из законов механики (класснч. и квантовой) и получение выражений для кинетич. ко-эф. через параметры, характеризующие iроение вещества, входят в задачу неравновесной статистической термодинамики, к-рая относится к Т.н.п. так же. как статистич. термодинамика к термодинамике (см., напр., Грина—Кубо форму.1ы). Обоснование Т.н. п. для газов даёт кинетическая теори.ч гаюв.  [c.89]

Механизм высокоэластичной деформации [22]. Высокоэластичное состояние является промежуточным физическим состоянием между жидким (текучим) и стеклообразным, поэтому в комплексе механических свойств эластомера можно обнаружить элементы свойств жидкого и стеклообразного тела. В простой жидкости молекулы легко перемещаются тепловым движением. Внешнее силовое поле дает преимущество перемещению в направлении поля, что приводит к возникновению макроскопически наблюдаемого течения жидкости. Развитие высокоэластичной деформации можно рассматривать как течение звеньев или групп звеньев макромолекулы под влиянием внешних сил. С этой точки зрения полимеры (и, в частности, эластомеры) близки к жидкостям. Однако, поскольку все звенья в цепи связаны, а цепи сшиты в пространственную сетчатую структуру, то их течение ограничено связями и не является необратимым. Это соответствует твердому состоянию тела. Таким образом, при высокоэластичном состоянии возможность свободного перемещения имеют только участки цепных макромолекул при отсутствии заметных перемещений макромолекулы в целом. Тепловые движения п эиводят к многочисленным-конформациям этих участков, при которых расстояние между узлами цепей пространственной сетки намного меньше контурной длины участков цепи. Под действием внешней силы цепи изменяют свои конформации, причем проекции участков в направлении деформации удлиняются (или сокращаются). Деформация развивается путем последовательного перемещения сегментов этих участков из одного положения в другое, т. е. протекает во времени [4, 49]. Этим объясняется отставание высокоэластичной деформации от изменения внешней нагрузки. Процесс перегруппировки сегментов сопровождается преодолением внутреннего трения и, следовательно, рассеянием механической энергии. После прекращения действия внешней силы участки цепи под действием теплового движения вновь вернутся в наиболее вероятное состояние сильно свернутых конформаций. По терминологии термодинамики переход в более вероятное состояние системы связан с возрастанием энтропии. Поэтому эластомеры имеют энтропийный характер деформации деформация связана с уменьшением энтропии, а возвращение в начальное положение — с увеличением ее. На основе законов термодинамики разработана статистическая (кинетическая) теория деформации и прочности полимеров, устанавливающая связь механических характеристик с температу-4 51  [c.51]

Последние годы XIX и начало XX столетий ознаменовались новым продвижением в развитии термодинамики. Работы профессора Киевского университета Н. Н. Шиллера и несколько позже итальянского ученого Каратеодори дали более глубокое толкование второго закона термодинамики. Для развития и научного обоснования многих положений термодинамики широко используются законы молекулярно-кинетической теории газов и методы теории вероятностей. Используются и аналитически обобщаются термодинамические свойства реальных тел. В развитии этих направлений термодинамики немалая заслуга принадлежит русским ученым (И. Н. Пирогов, Д. И. Менделеев и др.). Большую работу по дальнейшей систематизации термодинамики, особенно в применении ее к нуждам развивающейся теплотехники, ировел русский ученый А. А. Радциг.  [c.7]

Приведенные многочисленные данные об исследованиях во второй половине XIX в. Менделеева, Пирогова, Столетова, Авенариуса, Тадеждина, Голицына, Шиллера и др. показывают, что русские ученые в развитии молекулярной физики и, в частности, кинетической теории, учения о критическом состоянии вещества, а также в части обосновання основных законов термодинамики и их аналитических выражений сыграли большую роль. Работы этих ученых, замечательные по своему содержанию и широкому кругу расс.матривае,мых в них вопросов, были хорошо выполнены как в части строго научного обоснования рассматриваемых положений, так и в части глубокой систематичности построения изложения теории исследуемых явлений.  [c.74]


В гл. 5 Термодинамика идеальных газов сначала выводится общее уравнение внутренней кинетической энергии газа, а затем, посредством его (принимая при этом, что абсолютная температура пропорциональна средней кинетической энергии поступательного движения частиц) выводится уравнение состояния Клапейрона. После этого посредством основного уравнения кинетической теории газов выводятся соотношения, позволяющие обосновать законы Авогадро и Джоуля. Затем в общее уравненне  [c.180]

В учебнике проф. Брандта имеется еще одно интересное и весьма полезное начинание в нем в приложении имеется раздел, в котором приведена основная литература по термодинамике — книги, брошюры и некоторые журнальные статьи. Этот список сочинений по термодинамике очень обстоятельный он охватывает литературу, вышедшую во второй половине XIX и в начале XX столетий (до 1917 г. включительно). В списке содержится более 450 наименований сочинений зарубежных и русских авторов. Вся приведенная в списке литература разбита по своему содержанию на 15, имеющих следующие наименования библиография задачники история сочинения общего характера и руководства первый и второй законы термодинами1Ш и. учение об энергии действие теплоты на твердые тела действительные газы, пары и жидкости характеристические уравнения тепловые машины холодильные машины тепловые (энтропийные) диаграммы принцип Ле-Шателье — Брауна приложения термодинамики к химии теорема Нернста и теория квант кинетическая теория газов. Из них наиболее обширными являются разделы Сочинения общего характера и руководства (136 наименований) и Первый и второй законы термодинамики и учение об энергии (76 наименований).  [c.191]

Первое издание этого учебника было выпущено в 1938 г., четвертое— в 1962 г. В первых изданиях учебник содержал довольно развитую общую кинетическую теорию вещества с выводом ряда основньгх соотношений этой теории и применением основных положе-пи1 ее для обоснования газовых законов (Бойля—Мариотта, Гей-Люссака и др.). В предисловии к первому изданию учебника было записано При составлении книги А. М. Литвин использовал метод изложения основ технической термодинамики на базе кинетической теории тепла, введенный впервые проф. Ж. Л. Танер-Таненбаум... .  [c.346]

Говоря в настоящей части книги о биографиях ученых, способствовавших своими научными трудами возникновению и развитию термодинамики, надо прежде всего сказать о физических открытиях и научных трудах Ломоносова, положивших начало термодинампке. О них достаточно подробно было сказано в 1-1 и 7-2 — это опровержение Ломоносовым гипотезы теплорода, установление динамической природы тепла и механизма ее передачи, основ молекулярно-кинетической теории вещества, предельной минимальной температуры, законов сохранения материи и движения, понятия о направлении течения тепловых процессов, а следовательно, идеи о втором законе термодинамики и многое другое. Характерно для Ломоносова было такл<е и то, что все научные утверждения давались им четко отработанными, в простой и строгой форме, свидетельствовавшей о глубоко убежденности автора в высказываемых им положениях. Прп этом изложение Ломоносовым даже серьезного научного вопроса обычно было ярким и удивительно образным. В этом убеждает хотя бы формулировка Ломоносовым законов постоянства массы и движения, его высказывания о природе тепла, его логические обоснования неприемлемости для науки гипотезы теплорода и др. Напомним некоторые из формулировок законов и положений Ломоносова. Так, в письме к Эйлеру Ломоносов высказывает по существу законы сохранения материи и энергии в следующей форме Все изменения, совершавшиеся в природе, происходят таким образом, что сколько к чему прибавилось, столько же отнимается от другого. Так, сколько к одному телу прибавится вещества, столько же отнимется от другого.. . Этот закон природы является настолько всеобщим, что простирается и на правила движения тело, побуждающее толчком к дви-  [c.521]

Кинетическая теория газов имеет большое значение при построении многих разделов термодинамики и установлении в ней ряда понятий (давления газа, температуры, внутренней энергии, энтроии и пр.), а также при обосновании основных физических законов. Кинетическая теория позволила Больцману показать физическую сущность второго закона термодинамики, особенности необратимых процессов, суть равновесия термодинамических систем и пр. Все это обусловливает исключительное значение для термодинамики работ Максвелла и других создателей кинетической теории газа.  [c.578]

Термин молекулярный диффузионный перенос охватывает явления диффузии, теплопроводности, термодиффузии и вязкости. Эти явления описываются некоторыми частями уравнений сохранения массы, количества движения и тепла, приведенных в предыдущем параграфе (см. уравнения (2.1.57)-(2.1.60)). В каждое из этих уравнений входит дивергенция потока некоторой величины, связанной, хотя бы и неявно, с градиентами термогидродинамических параметров (так называемыми термодинамическими силами). Существуют два способа получения линейных связей определяющга соотношений) между этими потоками и сопряженными им термодинамическими силами, основывающихся на макроскопическом (феноменологическом) и кинетическом подходах. Кинетический подход связан с решением системы обобщенных уравнений Больцмана для многокомпонентной газовой смеси и до конца разработан только для газов умеренной плотности, когда известен потенциал взаимодействия между элементарными частицами (см., например, Чепмен, Каулинг, 1960 Ферцигер, Капер, 1976 Маров, Колесниченко, 1987)). Феноменологический подход, основанный на применении законов механики сплошной среды и неравновесной термодинамики к макроскопическому объему смеси, не связан с постулированием конкретной микроскопической модели взаимодействия частиц и годится для широкого класса сред. В рамках феноменологического подхода явный вид кинетических коэффициентов (коэффициентов при градиентах термогидродинамических параметров в определяющих соотношениях) не расшифровывается, однако их физический смысл часто может быть выяснен (например, для разреженных газов) в рамках молекулярно-кинетической теории Маров, Колесниченко, 1987)  [c.85]

В аэрономических исследованиях при моделировании процессов тепло- и массопереноса удобно гшеть подобные определяющие соотношения в виде соотношений Стефана-Максвелла, в которые, вместо многокомпонентных коэффициентов диффузии (для которых кинетическая теория разреженных газов дает чрезвычайно громоздкие расчетные формулы), входят коэффициенты диффузии в бинарных смесях газов. Эти соотношения и соответствующее им выражение для полного потока тепла в многокомпонентной смеси получены в монографии методами термодинамики необратимых процессов с использованием принципа взаимности Онзагера-Казимира. Феноменологический вывод обобщенных соотношений Стефана-Максвелла обосновывает законность их использования с полу эмпирическими выражениями для бинарных коэффициентов диффузии (и коэффициентов термодиффузии), что важно с точки зрения практических приложений,  [c.113]

Больцман (Boltzmann) Людвиг (1844-1906) — выдающийся австрийский физик, один из основателей статистической физики и физической кинетики. Окончил Венский университет (1866 г.), работал в Граце, Вене, Мюнхене, Лейпциге. Вывел (1868 г.) функцию распределения и кинетическое уравнение газов, названное его именем. Дал (1872 г.) статистическое обоснование второго качала термодинамики, связав энтропию системы с вероятностью состояния системы. Впервые применил к теории излучения принципы термодинамики (закон Стефана — Больцмана). Работы по математике, оптике, гидродинамике, теории упругости, теории электромагнетизма, по философии естествознания. Именем Больцмана названа одна из трех универсальных физических постоянных (постоянная Больцмана). Член многих академий наук.  [c.20]

Эти мистические утверждения об односторонности протекания мирового процесса были опровергнуты последующими научными открытиями. Развитая рядом ученых, начиная от М. В. Ломоносова, кинетическая теория вещества показала, что явления, например, в микромире, т. е. в телах, состоящих из небольшого числа молекул, могут происходить иначе, чем в больших телах (макротелах), состоящих из громадного числа молекул, и таким образом, второй закон термодинамики носит не абсолютный, а как говорят, статистический характер. Именно так рассматривается этот закон встатисти-ческой термодинамике, получившей свое развитие в трудах Л. Больцмана, а в России — в работах профессора Киевского университета Н. И. Пирогова .  [c.49]

Когда Больцман начинал свою работу, кинетическая теория газов была для того временн уже достаточно разработана такими пионерами этой науки, как Клаузиус и Максвелл. Успешно были рассмотрены явления диффузии, теплопроводности, вязкости и т. д. Если считать,, что все элементарные процессы носят чисто механический характер, то для приверженцев кинетической теории теплоты первый закон термодинамики, как было показано Гельмгольцем, становится просто следствием известного закона механики — закона сохранения кинетической энергии ( Prinzip der lebendigen Krafte ). Тогда Больцман задал себе вопрос не лежит ли п в основе второго закона термодинамики какой-либо чисто механический принцип  [c.67]



Смотреть страницы где упоминается термин ТЕРМОДИНАМИКА И КИНЕТИЧЕСКАЯ ТЕОРИЯ Законы термодинамики : [c.923]    [c.2]    [c.33]    [c.11]    [c.103]    [c.14]    [c.37]    [c.10]    [c.4]   
Смотреть главы в:

Статистическая механика  -> ТЕРМОДИНАМИКА И КИНЕТИЧЕСКАЯ ТЕОРИЯ Законы термодинамики



ПОИСК



Второй закон термодинамики в кинетической теории газов

Закон термодинамики

Первый закон термодинамики в кинетической теории газов

Первый закон термодинамики в кинетической теории газов статистической механике

Термодинамика



© 2025 Mash-xxl.info Реклама на сайте