Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамика идеальных газов

Соотношение (2.20) называется уравнением Майера и является одним из основных в технической термодинамике идеальных газов.  [c.16]

Газ, ТОЧНО подчиняющийся уравнению состояния (1.11), называется в термодинамике идеальным газом.  [c.19]

Согласно (1.73) —(1.74) летучесть можно определить как давление, которое должна иметь реальная система, чтобы оказывать такое же действие, как и идеальная система. Поэтому летучесть можно назвать исправленным давлением . Введение летучести позволяет формальным путем сохранить простоту уравнений термодинамики идеальных газов. Трудности, связанные с учетом отклонения газов от идеального поведения, переносятся на вычисление летучести.  [c.21]


Компрессорная машина представляет собой открытую термодинамическую систему. Теория компрессорных машин, обладающая практически приемлемой точностью, основывается на термодинамике идеального газа. Например, расчет воздушных компрессоров на давление до 10 МПа по уравнениям идеального газа дает погрешность около 2%.  [c.222]

В учебном пособии рассмотрены основные законы термодинамики идеальных газов и смесей, свойства сухого воздуха, водяного пара, воды и льда. Состав и свойства влажного воздуха ограничены диапазоном температур и давлений, характерных для процессов комфортного кондиционирования воздуха. Приведены данные по влиянию кривизны поверхности раздела фаз на давление насыщения, радиуса капли - на температуру её замерзания, а также зависимости для определения энтальпии, энтропии и эксергии влажного воздуха как гетерогенной смеси.  [c.2]

Авторы сочли необходимым в разделе 1 кратко изложить основные законы термодинамики идеальных газов и смесей, которым подчиняется в указанном диапазоне температур и давлений влажный воздух, и остановиться более подробно на свойствах льда и тумана, влиянии кривизны поверхности раздела фаз на давление насыщения, зависимости температуры замерзания капель воды от давления и других вопросах.  [c.5]

Термодинамика идеальных газов и смесей. Основные понятия и соотношения  [c.7]

Термодинамика идеальных газов и смесей  [c.8]

Термодинамика идеальных газов и смесей ++ ++++ +  [c.10]

Термодинамика идеальных газов и смесей Из выражения (1.5) получим  [c.16]

Расчет компрессоров с конечным давлением сжатия до 10 МПа по уравнениям термодинамики идеального газа дает результаты, весьма близкие к действительным..  [c.266]

Пользуясь этой формой уравнения состояния, мы получим теперь новый результат, имеющий важное значение для термодинамики идеального газа.  [c.61]

Учебник Брандта содержит следующие главы (ч. 1 — Основные законы. Газы) два закона термодинамики идеальные газы воздушные тепловые и холодильные машины двигатели внутреннего сгора-  [c.193]

Следовательно, внутренняя энергия и энтальпия идеальной плазмы (с бесконечной электропроводностью) при наличии поперечного магнитного поля зависят от ее плотности. В термодинамике идеальных газов такой зависимости нет.  [c.445]

Следовательно, описание термодинамики идеального газа сводится к заданию функции = ё Т).  [c.22]

Термодинамика идеальных газов  [c.157]


Термомеханический преобразователь. Линеаризованным уравнениям термодинамики идеального газа может быть придана следующая форма  [c.50]

Пользуясь нашими приемами и определениями, рассмотрим теперь соотношения, составляющие предмет классической термодинамики идеального газа.  [c.145]

Для задач технической термодинамики важно не абсолютное значение внутренней энергии, а ее изменение в различных термодинамических процессах. Поэтому начало отсчета внутренней энергии может быть выбрано произвольно. Например, в соответствии с международным соглашением для воды за нуль принимается значение внутренней энергии при температуре 0,01 °С и давление 610,8 Па, а для идеальных газов — при  [c.12]

Таким процессом является, например, изотермическое расширение идеального газа, находящегося в тепловом контакте с горячим источником. Так как в этом процессе изменение внутренней энергии равно нулю, то согласно первому закону термодинамики, работа, совершенная при расширении газа, равна количеству теплоты, переданной от горячего источника. Таким образом, имеет место полное превращение теплоты в работу. Но это не противоречит второму закону термодинамики, который утверждает, что невозможен процесс, единственным конечным результатом которого будет превращение в работу теплоты, извлеченной от горячего источника. Действительно, в конце изотермического процесса газ занимает объем больше, чем он занимал вначале. Изменение состояния газа и является компенсацией превращения теплоты в работу.  [c.209]

Основываясь на таком рассуждении, были введены элементарные понятия квантовой и статистической механики для интерпретации эмпирической стороны классической термодинамики. Квантовое представление об энергетических уровнях использовано для интерпретации внутренней энергии. Статистические теории приведены для того, чтобы показать, что термодинамические энергии и энтропия являются средними или статистическими свойствами системы в целом. Это позволяет понять основные положения второго закона, обоснование третьего закона и шкалу абсолютных энтропий. Также представлены методы вычисления теплоемкости и абсолютной энтропии идеальных газов. Численные значения абсолютной энтропии особенно важны для анализа систем с химическими реакциями. После рассмотрения этих основных положений технические применения даны в виде обычных термодинамических соотношений.  [c.27]

Один из простейших обратимых циклов теплового двигателя — цикл Карно. Анализ этого цикла имеет историческое значение в развитии термодинамики. Цикл Карно использует идеальный газ  [c.197]

СКОЛЬКИХ параметров состояния. Например, тепловое состояние идеального газа определяется лишь двумя такими параметрами давлением Р и молярным объемом Ущ- Отсюда и из нулевого закона термодинамики следует, что эти параметры состояния и температура должны быть связаны функциональной зависимостью. Можно записать  [c.15]

Для чего вводится в техническую термодинамику понятие об идеальном газе  [c.27]

В технической термодинамике рассматриваются только такие процессы, в которых изменяются кинетическая и потенциальная составляющие внутренней энергии. При этом знания абсолютных значений внутренней энергии не требуется. Поэтому в понятие внутренней энергии будем в дальнейшем включать для идеальных газов кинетическую энергию движения молекул и энергию колебательных движений атомов в молекуле, а для реальных газов еще дополнительно и потенциальную составляющую энергии, связанную с наличием сил взаимодействия между молекулами и зависящую от расстояния между ними.  [c.54]

Полученное уравнение первого закона термодинамики (5-8) справедливо для любых рабочих тел и, в частности, для идеальных газов. Это уравнение описывает как обратимые, так и необратимые процессы. Действительно для необратимых процессов  [c.63]


Поскольку в термодинамике не требуется знание абсолютного значения энтальпии, то, так же как и внутренняя энергия, она обычно отсчитывается от некоторого условного нуля. В частности, энтальпия идеального газа при = 0° С принимается равной нулю.  [c.64]

Из первого начала термодинамики идеальных газов для адиабатного процесса (8q = 0, s = idem) находим  [c.47]

Отметим, что в термодинамике идеального газа широко иепользуется отношение удельных теплоемкостей, называемое показателем адиабаты  [c.137]

Величину энтальпии в соответствии с ее определением как энергии расширенной системы представляют обычно в виде суммы внутренней энергии и потенциальной, равной изобарной работе по преодолению постоянного (т. е. не зависяш,его от объема) внешнего давления, вызывающего расширение тела от нулевого объема до данного его значения. Тогда можно считать, что в пос-ледних выражениях член —Р V— V"o) = означает работу внешнего давления Р — onst, направленного на противодействие внутренним силам отталкивания атомов по гипотетическому расширению тела от состояния максимальной плотности вещества с объемом Vo до существующего в данный момент объема V, причем Vo С У, величиной Vo можно пренебрегать, тогда уравнение (31) совпадает с обычным соотношением термодинамики идеального газа.  [c.17]

XI Генеральная конференции по мерам и весам (1960 г.) приняла (см. приложение в работе [1]) в качестве основной Международную термодинамическую температурную шкалу (Кельвина) с обозначением температуры Т и единицы измерения °К (градус Кельвина). Эта шкала базируется на законах термодинамики идеального газа и использует в качестве основной температуру тройной точки воды, которой присвоено значение 273,16°К. Термин основнаи шкала означает.  [c.91]

В гл. 5 Термодинамика идеальных газов сначала выводится общее уравнение внутренней кинетической энергии газа, а затем, посредством его (принимая при этом, что абсолютная температура пропорциональна средней кинетической энергии поступательного движения частиц) выводится уравнение состояния Клапейрона. После этого посредством основного уравнения кинетической теории газов выводятся соотношения, позволяющие обосновать законы Авогадро и Джоуля. Затем в общее уравненне  [c.180]

Дело в том, что теория некоторых разделов термодинамики строится применительно к тому или иному уравнению состояния, а потому вытекающие из нее следствия носят частный характер и имеют ограничения при своем применении. В отличие от этого теория дифференциальных уравнений термодинамики, построенная на основе ее дзух начал, является общей термодинамической теорией. Из общих уравнений и формул этой теории могут быть получены при выбранных условиях соответствующие им частные решения. Так, например, если общие положения теории дифференциальных уравнений термодинамики применяются в сочетании с уравнением состояния Клапейрона—Менделеева, то при этом будем иметь основные законы, уравнения и положения термодинамики идеального газа если же данные этой теории применяются в соответствии с уравнением состояния Ван-дер-Ваальса, то будут найдены общие положения термодинамики вандерваальсовского газа и т. д.  [c.417]

Как мы уже указывали, автор в ряде случаев избегает строгого подхода к тем или иным термодинамическим понятиям. Например, по сути дела он не провел различия между понятиями равновесный и обратимый (процессы). Как известно, про--цесс является равновесным (квазистатическим), если он состоит из непрерывной совокупности равновесных состояний системы. Обратимый же процесс — это такой процесс с рассматриваемой системой, выполнив который она может вернуться в исходное состояние без изменений в ней самой и в системах, внешних по отношению к ней. В подавляющем большинстве случаев равновесные процессы являются обратимыми, однако можно привести пример, когда равновесный процесс не является обратимым. В описании политропных процессов автор отошел от общепринятого понимания понятия политропный процесс . В отличие от принятого в советской термодинамической литературе автор определяет политропный процесс как такой процесс с идеальным газом, который удовлетворяет условию pv = onst, в котором величина о лежит между единицей и величиной отношения pj . Поэтому изотермический, адиабатный и многие другие процессы не являются, по мнению автора, политропными. В указанном ограничении величины о и состоит отличие понимания политроп-ного процесса автором от принятого советскими термодинамиками.  [c.24]

В заключение следует отметить, что введение понятия энтропии было сделано пока применительно к идеальному газу, и все утверждения относительно свойств энтропии не могут пока быть обоснованно распространены и на реальные газы. Однако, как будет показано в главе VIII Второй закон термодинамики , понятие энтропии может быть установлено достаточно точно независимо от свойств рабочего тела. Пока же этот параметр будет использован как весьма удобный при анализе процессов идеального газа.  [c.85]


Смотреть страницы где упоминается термин Термодинамика идеальных газов : [c.55]    [c.57]    [c.53]    [c.19]   
Смотреть главы в:

Современная термодинамика  -> Термодинамика идеальных газов



ПОИСК



Аналитическое выражение первого начала термодинамики для идеальных газов. Закон Майера

Вычисление внутренней энергии идеального газа уравнение первого закона термодинамики для идеального газа

Газов термодинамика

Газы идеальные

Газы идеальные (см. идеальные газы)

Дифференциальные уравнения термодинамики для идеального газа

Дифференциальные уравнения термодинамики для идеальных газов

ПРИМЕНЕНИЕ ОСНОВНЫХ ЗАКОНОВ ТЕРМОДИНАМИКИ К ИДЕАЛЬНЫМ ГАЗАМ Термодинамические свойства и теплоемкость идеального газа

Первое начало термодинамики для идеальных газов

Первое начало термодинамики для идеальных газов. Закон Майера

Разделвторой Применение основных законов термодинамики к идеальным газам Смеси идеальных газов

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА ИДЕАЛЬНЫЙ И РЕАЛЬНЫЙ ГАЗЫ. ГАЗОВЫЕ ЗАКОНЫ

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА Основные положения. Законы идеальных газов

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА Рабочее тело и его основные параметры Рабочее тело идеальный и реальный газы

Теоретические основы, теплотехники Раздел первый ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА Свойства идеальных газов

Термодинамика

Термодинамика идеальных газов и смесей. Основные понятия и соотношения



© 2025 Mash-xxl.info Реклама на сайте