Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

НЕКОТОРЫЕ ВОПРОСЫ ТЕОРИИ УПРУГОСТИ Упругие материалы

Учебник для вузов, в которых сопротивление материалов изучается по полной программе. Книгу в целом отличает глубоко продуманная последовательность изложения - от частного к общему - и разумное повторение материала, позволяющее глубже вникнуть в существо вопроса. В первой части дается традиционный курс сопротивления материалов в элементарном изложении. Во второй части приводятся дополнения по некоторым вопросам, рассмотренным в первой части, а также рассматриваются задачи, требующие применения методов теории упругости. Таковы, например, задачи о кручении стержней, о местных напряжениях, об изгибе пластинок, о кручении тонкостенных стержней. Для возможности более обоснованной трактовки таких задач в книгу включен раздел, посвященный основным уравнениям теории упругости и некоторым наиболее простым задачам этой науки.  [c.234]


Уравнения равновесия и соотношения, связывающие деформации и перемещения и аналогичные тем, что выведены в главе 6 для произвольной оболочки, не ограничиваются случаем упругого материала и могут быть применены ко всем материалам при различных условиях их работы. Частично, кроме упоминавшихся вопросов общности, в оставшейся части этой главы будут обсуждены некоторые аспекты более общих зависимостей напряжений от деформаций, такие, как близко связанные с этими вопросами теории разрушений, коэффициенты запаса и т. п., что лежит в основе всех расчетов.  [c.28]

После этого раздела следуют гл. 8—11, относящиеся к классической теории упругости. После некоторых колебаний автор решил все же включить сюда раздел, относящийся к теории конечных деформаций, область применения этой теории слишком ограничена и имеющиеся решения крайне немногочисленны. Подобранный материал в основном соответствует университетской программе. Преподаватель всегда сможет выбрать отсюда те разделы, которые покажутся ему более интересными. В практике преподавания теории упругости на механико-математическом факультете МГУ автор отказался от изложения теории изгиба Сен-Венана, считая, что вопрос о распределении касательных напряжений при изгибе ие очень важен. Однако появление композитных материалов с полимерной матрицей, которые слабо сопротивляются сдвигу, заставило ввести опять теорию касательных напряжений при изгибе для балок прямоугольного сечения — что нужно для практики. Вообще, применение в технике композитных материалов заставило включить в курс элементы теории упругости анизотропных тел.  [c.13]

Расчет на прочность элементов теплотехнического оборудования состоит из двух этапов. На первом этапе вычисляют напряжения, деформации и перемещения в элементах конструкций, подверженных воздействию внешних нагрузок, или вычисляют некоторые предельные значения этих нагрузок. Решению этой задачи служат методы механики материалов и конструкций, строительной механики, теории упругости и т.п. Конечная цель инженерного расчета на прочность — это решение вопроса о том, сможет ли конструкция достаточно надежно служить в течение установленного срока. Второй этап расчета состоит либо в сопоставлении вычисленных напряжений, деформаций и перемещений с некоторыми нормативно допустимыми значениями, либо в сопоставлении расчетных нагрузок с их предельными значениями. На втором, весьма важном этапе расчета решается вопрос, является ли конструкция достаточно надежной, долговечной и экономичной.  [c.399]


С точки зрения приложений, если не считать задач обработки пластических материалов и некоторых проблем геофизики, данная теория может быть применима в широкой области расчета конструкций. Задача ставится так задана конструкция (машина, сооружение, судно, средство передвижения и т. п.) и условия ее эксплуатации (внешние силы, температура и т. п.). Следует дать заключение о том, будет ли данная конструкция функционировать в течение некоторого времени, либо она выйдет из строя сразу. Следует признать, что ни теория упругости, ни теория пластичности не дают ответа на этот вопрос. Это и явилось причиной возникновения в недавнее время новой отрасли механики твердых тел механики разрушения.  [c.7]

Весь цикл научных дисциплин, относящихся к механике деформируемого тела и связанных с разработкой вопросов прочности (жесткости, устойчивости) конструкций, часто называют строительной механикой в широком смысле слова. Строительной механикой (в узком смысле слова) называют статику и динамику сооружений. Границы между отдельными ветвями науки о прочности конструкций определяются как объектами, так и методами исследования, но зачастую эти границы точно указаны быть не могут. Так, прикладная теория упругости занимается в основном расчетом пластин, оболочек и некоторыми сложными задачами расчета брусьев (понятия о брусе, пластинке и оболочке даны в 1.2), привлекая для решения соответствующих задач более сложный математический аппарат, чем сопротивление материалов, но не-  [c.10]

В настоящую книгу, посвящённую пространственным задачам теории упругости, можно было бы включить наряду с тем материалом, который представлен, изложение теорем о существовании решений уравнений теории упругости, вариационных и других прямых методов решения пространственных задач и рассмотрение некоторых специальных вопросов, в первую очередь задачи Сен-Венана и ей родственных задач Митчелла и Альманзи, а также учения о концентрации напряжений в местах резкого изменения геометрической формы упругого тела. Выполнение такой программы превышает силы и возможности автора оно потребовало бы для изложения, могущего претендовать на полноту и обстоятельность, работы целого коллектива и книги совершенно иного объёма. Надо надеяться, что советская литература, располагающая капитальными трудами по теории упругости, со временем обогатится отдельными сочинениями и по указанным выше вопросам.  [c.7]

Цель третьей главы — определить место теории упругости в механике материалов, четвертой и пятой — описать поведение упругого тела определяющие уравнения, получаемые по заданию удельной потенциальной энергии деформации, принципы стационарности уделено место некоторым критериальным неравенствам, выводимым из требований монотонности и сильной эллиптичности. Вероятно не исключено, что в ближайшие годы эту основную, неразрешенную задачу ожидает решающее продвижение в связи с незатронутыми в книге вопросами суш ест-вования решения краевых задач нелинейной теории упругости.  [c.9]

Задача Сен-Венана о равновесии упругого призматического стержня под действием произвольной нагрузки, заданной на его торцах, является одной из важнейших задач теории упругости, поскольку ее решение дает возможность оценить точность элементарной теории изгиба, рассматривающейся в сопротивлении материалов, а также позволяет исследовать представляющую значительный практический интерес проблему кручения стержней, которая не может быть решена элементарными приемами. Задача Сен-Венана (в общей ее постановке) является, кроме того, одной из труднейших задач теории упругости. С математической точки зрения она решена далеко не полно. Однако в силу так называемого принципа Сен-Венана имеющееся ее решение, излагаемое ниже, может рассматриваться (хотя и с некоторыми оговорками) как исчерпывающее вопрос.  [c.236]

Остановимся на некоторых характерных чертах теории пластичности. Во-первых, в теории пластичности большое,место (в отличие от теории упругости) занимают вопросы установления законов пластического деформирования при сложном напряженном состоянии. Вопросы эти трудны, и следует заметить, что законы, удовлетворительно согласующиеся (при известных ограничениях) с экспериментальными данными, установлены главным образом для металлов, хотя, вероятно, они сохраняют значение и для многих других материалов. Другой особенностью теории пластичности является нелинейность основных законов, а следовательно, и основных уравнений теории пластичности. Решение этих уравнений представляет большие математические трудности классические методы математической физики здесь непригодны. В теории пластичности важное значение приобретает развитие таких путей исследования, которые, используя специфичность задач теории пластичности, позволяют в той или иной мере преодолеть эти трудности. В этих условиях весьма перспективным также является использование новой вычислительной техники.  [c.10]


Касаясь современного состояния теории расчета муфт с упругими элементами из высокоэластичных материалов, следует отметить, что она в отличие от достаточно хорошо развитой теории муфт с металлическими упругими элементами находится лишь на стадии становления. Имеющийся в отечественной и зарубежной технической литературе материал по этому типу муфт либо носит описательный характер, либо посвящен решению некоторых частных задач. Это, естественно, затрудняет работу конструкторов, занимающихся проектированием приводов с упругими муфтами, сдерживает процесс совершенствования конструкций муфт. Особенно остро отсутствие методов расчета муфт с резиновыми упругими элементами проявилось в период наметившейся их стандартизации, когда перед разработчиками стандартов встал вопрос о создании технически обоснованных параметрических рядов муфт и разработке конструкций муфт с высоким уровнем качества.  [c.3]

В данной работе изложены основы теории и методы расчета муфт с упругими элементами из высокоэластичных материалов. Все прикладные вопросы прочности и жесткости муфт решены на базе современных методов теории упругости и вязкоупругости. Использован один из наиболее эффективных расчетных методов — метод конечных элементов, который дает возможность решать широкий круг задач при самых общих предположениях относительно конструктивных и реологических особенностей исследуемых изделий. Вариационная постановка задач теории упругости и сведение их к проблеме минимизации некоторых специальных функционалов потенциальной энергии деформации позволили получить достаточно точные решения при сравнительно больших деформациях, в том числе и в случае геометрически нелинейных задач.  [c.4]

Следует отметить также близкую по постановке теорию распространения динамических воли в упруго-пластических материалах с задержкой текучести (малоуглеродистых сталях). Эта теория развита Ю. Н. Работновым [ ] она основана, по существу, на тех же представлениях а) — д) (вместо условия е) требуется, чтобы некоторый функционал во времени от определенной комбинации напряжений достигал критического значения). Представления а) — д) были использованы также в теории псевдооясижения двухфазных (дисперсных) систем, развитой автором [ применительно к вопросам химической технологии.  [c.457]

За недостатком места в этом томе не затронут ряд интересных приложений теории пластичности. Предполагается, что эти темы будут освещены во втором томе, куда намечено включить такие вопросы, как пластические деформации металлов под сосредоточенным давлением с приложением к процессам формовки путем прокатки и волочения, теория твердости, остаточные напряжения, деформации оболочек, устойчивость тонких пластинок за пределом упругости, энергетические принципы, а также примеры течения весьма вязких материалов. Актуальность задач проектирования частей машин, подвергающихся действию очень высокой температуры, побуждает поставить на обсуждение и вопрос о ползучести металлов и, в частности, рассмотреть законы деформпрования при ползучести. Все эти вопросы, а также некоторые вопросы геофизики,  [c.5]

Второй том монографии известного ученого А. Надаи посвящен широкому кругу вопросов механики упругих, вязких и пластичных материалов, а также основам механики сыпучих сред и ползучести (перевод первого тома опубликован в 1954 г. Издательством иностранной литературы). Наряду с изложением классических вопросов теории упругости и пластичности в книге большое внимание уделено приложениям, включая приложения к геимеханике. Многие результаты принадлежат автору, некоторые из них публикуются впервые. Следует отметить, что содержание второго тома книги Надаи в значительной степени не зависит от первого тома.  [c.4]

В восемнадцати предшествующих главах были изложены различные разделы механики деформируемого твердого тела, при этом практическая направленность каждого из них не очень акцентировалась. Но основная область приложения механики твердого тела — это оценка прочности реальных элементов конструкций в реальных условиях эксплуатации. С этой точки зре-нпя различные главы приближают нас к решению этого основного вопроса в разной степени. Классическая линейная теория упругости формулирует свою задачу следуюш им образом дано пекоторое тело, на это тело действуют заданные нагрузки, точки границы тела претерпевают заданные перемещения. Требуется определить поле вектора перемещений и тензора напряжений во всех точках тела. После того как эта задача решена, возникает естественный и основной вопрос — что это, хорошо или плохо Разрушится сооружение или не разрушится Теория упругости сама по себе ответа на этот вопрос не дает. Правда, зная величину напряжений, мы можем потребовать, чтобы в каждой точке тела выполнялось условие прочности, т. е. некоторая функция от компонент о.-,- не превосходила допускаемого значения. В частности, можно потребовать, чтобы нигде не достигалось условие пластичности, более того, чтобы по отношению к этому локальному условию сохранялся некоторый запас прочности, понятие о котором было сообщено в гл. 2 и 3. Мы знаем, что для пластичных материалов выполнение условия пластичности в одной точке еще не означает потери несущей способности, что было детально разъяснено на простом примере в 3.5. Поэтому расчет по допустимым напряжениям для пластичного материала безусловно гарантирует прочность изделия. Для хрупких материалов условие локального разрушения отлично от условия наступления текучести и локальное разрушение может послужить началом разрушения тела в целом. Поэтому расчет по допускаемым напряжениям для хрупких материалов более оправдан. Аналогичная ситуация возникает при переменных нагрузках и при действии высоких температур. В этих условиях даже пластические материалы разрушаются без заметной пластической деформации и микротрещина, возникшая в точке, где 42  [c.651]


До недавнего времени основное содержание работ по механике композиционных материалов состояло в сведении задачи неоднородной (чаще всего изотропной) теории упругости к задаче однородной анизотропной теории. Это достигалось введением так называемых эффективных модулей, которые либо вычислялись различными методами (как стохастическими, так и детерминированными), либо определялись экспериментально как средние модули материала в целом. В данной книге этому вопросу посиящены главы 1—3. Понятно, что описание поведения композиционных материалов при помощи эффективных модулей пригодно только для решения задач об упругих композитах, Б некоторых случаях принцип Вольтерры (или, как его еще называю г, принцип соответствия) позволяет распространить теорию эффективных модулей и на линейные вязкоупругие композиты (глава 4), В настоящее время в отечественной литературе появились работы, в которых неоднородная задача теории упругости (вязкоупругости) сведена к последовательности задач анизотропной однородной моментной теории упру-  [c.6]

Если проследить за эволюцией сопротивления материалов за последние 40 лет, то легко заметить общую тенденцию, направленную к переходу от решения задач строительного профиля к более общему машиностроительному. Сопротивление материалов заметно обогатилось, стало многообразнее и насыщеннее. В него вошли вопросы усталостной прочности и динамики. В современных учебных курсах нашли свое отражение теории пластичности и ползучести. Введены основные задачи теории нластин и оболочек, анализ которых прежде традиционно относился к теории упругости. В ближайшее время следует ожидать внедрения в сопротивление материалов некоторых элементов нелинейной теории упругих систем.  [c.11]

В настоящее время вопрос о нахождении надлежащего дополнительного неравенства для всех упругих материалов следует считать открытнм, если вообще раз решимым. Тем не менее ОСМ- и ОСМ+-условия имеют важное значение, поскольку они оказываются достаточными для доказательства различных важных и полезных теорем, которые неверны, если не использовать какое-нибудь из неравенств такого рода. Некоторые из этих теорем мы приведем в последующих параграфах.  [c.326]

Как известно, несовершенство упорядоченного расположения атомов в поликристаллических металлах и минералах оказывает влияние на скорость и поглощение акустических волн в этих материалах. Поскольку многие породы состоят из зерен, которые имеют очевидную кристаллическую структуру или, по крайней мере, химическое строение которых предполагает упорядоченность атомов, можно ожидать, что такие же эффект могут проявляться и при распространении сейсмических волн. Полный обзор исследования по этому вопросу и обсуждение наиболее важных идей было дано Мэйсоном (1976 г.). Главная идея заключается в том, что напряжения могут изменять положение дефектов в кристаллической решетке. Это изменяет связь деформации с напряжением в среде, увеличивая значения упругих модулей и добавляя к ним мнимую часть. Чтобы изменить положение дефекта, требуются как тепловая энергия, так и механическое напряжение. Тепловая энергия затрачивается на преодоление энергетического барьера, который смещается под воздействием напряжений. Согласно Мэйсону дефектом, который наиболее сильно влияет на скорость и поглощение волн, является дислокация, представляющая линейную область нарушенного порядка, удерживаемая на обоих концах некоторыми дефектными атомами. В одном слу тае сейсмические волны заставляют дислокацию колебаться подобно растянутой струне, излучая энергию при взаимодействии с тепловыми фоно-иами. Это явление обусловливает широкий максимум поглощения в мегагерцовом диапазоне частот. Более вероятно, что дислокации пересекают энергетический барьер и только частично находятся в области мини-чума потенциальной энергии. Каждая дислокация может содержать некоторое число узлов, при этом движение дислокации происходит в том случае, когда все узлы переходят через потенциальный барьер в соответствии с приложенным напряжением, Этот механизм ведет к независимости Q от частоты. Оба механизма дают значения Q, находящиеся в хорошем согласии с экспериментами на гранитах формации Уистерли и других породах, если использовать некоторые правдоподобные предположения о размере и плотности дислокаций. Результаты более поздних экспериментов [99] не удалось объяснить движением дислокаций в твердой фазе пород. В связи с этим была развита модель, базирующаяся на теории Герца для контактируюш,их сфер, в которой учитывается движение дислокаций на поверхности трещин. Искажения материала, наблюдаемые при деформациях, достигающих 10-, могут быть Объяснены наличием дислокаций, отрывающихся от концевых дефектных атомов.  [c.141]

Изучение поведения упругих тел произвольной формы под действием произвольных сил служит задачей специальной дисциплины, называемой теорией упругости. Иногда употребляют терыян математическая теория упругости, подчеркивая этим та, что, поскольку закон упругости предполагается известным, опредмение напряжений и деформаций является строго поставленной математической задачей интегрирования некоторых систем дифференциальных уравнений. Методы теории упругости, при всей их общности и точности, еще недостаточны для суждения о прочности реальных конструкций. С другой стороны, строгая постановка вопроса об определении напряжений и деформаций методами теории упругости часто приводит к непреодолимым математическим трудностям. Сопротивление материалов тесно связано с теорией упругости и широко использует ее результаты, но нельзя считать, что это упрощенная теория упругости. Пользуясь более простыми математическими методами, сопротивление материалов ставит более широкую задачу, а именно суждение о прочности элементов конструкций с возможно более полным учетом реальных свойств материалов.  [c.26]


Смотреть страницы где упоминается термин НЕКОТОРЫЕ ВОПРОСЫ ТЕОРИИ УПРУГОСТИ Упругие материалы : [c.10]    [c.607]    [c.11]    [c.162]    [c.628]    [c.26]    [c.189]   
Смотреть главы в:

Первоначальный курс рациональной механики сплошных сред  -> НЕКОТОРЫЕ ВОПРОСЫ ТЕОРИИ УПРУГОСТИ Упругие материалы



ПОИСК



Материалы упругие

Теория вопроса

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте