Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Износостойкий Термическая обработка

При вращении шпинделя сверлить можно на всю длину с одной установки. Если же вращать сверло, то для меньшего его увода сверлить следует до половины длины с одного конца и вторую половину — с другого конца, т. е. за две установки с базированием по обточенным шейкам. Затем зенкеруют отверстие с переднего конца коническим зенкером на вертикально-сверлильном станке, с последующим растачиванием конического отверстия с переднего и заднего концов, с одновременным подрезанием обоих торцов на токарном станке. Затем заготовка подвергается термической обработке, которая зависит от выбранной марки стали и преследует цель повышения износостойкости поверхностей опорных шеек и других поверхностей с сохранением сырой сердцевины. Термическая обработка не должна вызывать заметных деформаций шпинделя. Применяется поверхностная закалка с нагревом токами высокой частоты.  [c.370]


После предварительной обработки на металлорежущих станках поверхности коренных и шатунных шеек стальных валов вторично подвергают термической обработке (закалке и отпуску). Закалка проводится токами высокой частоты на специальных агрегатах, а низкотемпературный отпуск, осуществляемый для снятия напряжений, — в специальных печах конвейерного типа. Вторичная термическая обработка улучшает механические свойства стали, повышает поверхностную твердость и износостойкость шеек.  [c.376]

Интенсивность изнашивания, а следовательно, и срок службы детали зависят от давления, скорости скольжения, коэффициента трения и износостойкости материала. Для уменьшения изнашивания широко используют смазку трущихся поверхностей и защиту от загрязнения, применяют антифрикционные материалы, специальные виды химико-термической обработки поверхностей и т. д.  [c.6]

Детали зубчатых муфт изготовляют из углеродистых сталей типа 45, 40Х, 45Л коваными или литыми. Для повышения износостойкости чубья полумуфт подвергают термической обработке до твердости не ниже HR 40, а зубья обойм — не ниже HR 35. Тихоходные муфты (и<5 м/с) можно изготовлять с твердостью зубьев HR <35.  [c.306]

Назначение цементации и последующей термической обработки — придать поверхностному слою высокую твердость и износостойкость, повысить предел контактной выносливости и предел выносливости ирп изгибе и кручении.  [c.231]

Химико-термическая обработка заключается в насыщении поверхностного слоя углеродом (цементация) или азотом (азотирование) с образованием (в последнем случае) нитридов железа и легирующих элементов. При комплексных процессах (цианирование, нитроцементация) поверхность насыщается одновременно углеродом и азотом с образованием карбидов и карбонитридов. Эти виды термообработки придают поверхности высокую твердость и износостойкость. В.месте с тем они увеличивают прочность (особенно в условиях циклической нагрузки) благодаря образованию в поверхностном слое напряжений сжатия.  [c.166]

Для повышения износостойкости трущихся поверхностей новых деталей наряду с гальваническими покрытиями широко применяют их термическую обработку поверхностную закалку с нагревом газовым пламенем (для поверхностного упрочнения стальных зубчатых колес, червяков, шеек коленчатых валов и пр.), высокочастотную закалку (кулачковые валы, шестерни, шейки валов, гильзы цилиндров, станины станков и др.). С этой же целью применяют обработку поверхностным пластическим деформированием, в процессе которого повышается твердость поверхностных слоев и достигается нужный класс шероховатости поверхности (обкатывание и раскатывание цилиндрических и плоских поверхностей, прошивание, калибрование и др.).  [c.247]


Износ рабочей поверхности зубьев из-за истирания приводит к искажению профиля зуба (рис. 19.1,6), а это, в свою очередь, вызывает увеличение динамических нагрузок, уменьшение точности передач, повышение напряжений при изгибе и в конечном итоге поломку зубьев. Такой вид повреждений зубьев характерен для открытых зубчатых передач. Уменьшению износа зубьев способствует повышение износостойкости поверхности зубьев благодаря химико-термической обработке и правильному подбору связи.  [c.200]

Долговечность цепных передач в основном зависит от материала и термической обработки их деталей. Для обеспечения износостойкости и сопротивляемости ударным нагрузкам детали цепей и звездочки изготовляют из термически обработанных или цементуемых углеродистых или легированных сталей (60, 6.5Г, 20, 20Х и др.). Звездочки тихоходных передач (ц гй 3 м/с) при спокойных нагрузках можно изготовлять из серых чугунов (С4 21—40 и др.) с последующей закалкой.  [c.432]

Тип структуры сплавов на основе железа формируется в результате термической и химико-термической обработки. Относительная износостойкость различных структур сплавов в условиях абразивного изнашивания приведена в таблице [1].  [c.125]

Различные материалы деталей трибосистем могут подвергаться модификации различными методами с использованием соответствующих технологических процессов. Образование твердого износостойкого слоя на трущихся поверхностях деталей, изготовленных из средне- и высокоуглеродистых сталей, ковкого, серого и высокопрочного чугуна, обеспечивается соответствующей термической обработкой (закалкой и последующим отпуском).  [c.235]

Расширение области применения режущего инструмента связано с разработкой методов модифицирования, сочетающих преимущества пучков заряженных частиц различных энергий и интенсивности, а также традиционных методов упрочнения, таких, как нанесение износостойких покрытий и термическая обработка. В связи с этим можно выделить два основных направления разработки. Это комбинированное модифицирование и комплексная обработка. К первому виду обработки относятся 1) комбинированная обработка на основе использования слабо-точных ионных пучков 2) комбинированная обработка на основе использования слаботочных и сильноточных ионных пучков. Второй вид модификации включает 1) комплексную обработку с использованием воздействия сильноточных ионных и электронных пучков с последующей термической обработкой 2) комплексную обработку с использованием термического, энергетического воздействия и нанесения на инструментальный материал износостойких покрытий.  [c.263]

Химико-термическая обработка имеет целью диффузионным способом насытить поверхность детали каким-либо элементом-упрочнителем и, таким образом, обеспечить получение высокой твердости и износостойкости. Чаще всего для этой цели применяются цементация, азотирование и цианирование.  [c.38]

Упрочняющая технология. Повышение запаса надежности технологического процесса можно обеспечить за счет введения специальных видов обработки, повышающих износостойкость, усталостную прочность, коррозионную стойкость изделий. Для этих целей применяются технологические процессы, упрочняющие поверхностный слой, придающие ему особые свойства [60 1131. Сюда относятся как процессы химико-термической обработки (закалка, цементация, азотирование, цианирование и др.), так и упрочняющая технология, основанная на пластическом деформировании поверхностей, а также различные специальные методы.  [c.447]

Основы надежности закладываются конструктором в содружестве с технологом при проектировании. Заданная надежность обеспечивается в процессе производства применением прогрессивной технологии. В эксплуатации заданная функция надежности реализуется выполнением всех правил эксплуатации. Надежность изделия тесно связана с его долговечностью. Эффективных мер повышения долговечности много, в их числе закалка стальных деталей при нагреве т. в. ч., дающая возможность увеличить износостойкость зубчатых передач в 2—4 раза хромирование трущихся деталей дает возможность увеличивать срок службы по износу в 3—5 раз и др. Хорошая система смазки является необходимым условием обеспечения надежности и долговечности машин. Широкое применение в машиностроении т. в. ч. для упрочнения деталей машин с целью повышения их ресурса объясняется многими их преимуществами по сравнению с другими видами термической обработки деталей. Однако реализовать эти преимущества возможно только при условии правильного установления параметров закалки. Важнейшими из них являются глубина закалки х , твердость HR , зона перехода закаленной части детали к незакаленной, частота тока и скорость процесса упрочнения. Теоретически глубина упрочнения трущейся детали должна равняться предельному допуску ее износа. Однако практически при ее определении следует учитывать условия работы детали, ее геометрические размеры и материал. Опыт применения т. в. ч. показывает, что при невыполнении этих условий закалка при индукционном нагреве приводит к отрицательным результатам. В тех случаях, когда зона перехода закаленной части детали к незакаленной совпадает с наиболее опасным сечением и местом концентрации напряжений, в этих зонах первоначально возможно появление микротрещин, а затем их развитие под действием знакопеременных нагрузок и усталостный излом. Аналогичные результаты могут быть и при недостаточной глубине закаленного слоя.  [c.206]


Начальные, исчезающие и остаточные напряжения обычно приводят к уменьшению прочности деталей. Однако умелое их использование, наоборот, дает возможность повысить прочность деталей следующими путями 1) предварительным напряжением в системе соединения тел (предварительно напряженный железобетон) 2) поверхностным наклепом (дробеструйной обработкой), при котором на поверхности детали создаются значительные напряжения сжатия, что приводит к повышению выносливости деталей 3) химико-термической обработкой (цементация, азотирование и др.), которая изменяет в верхних слоях поверхности химический состав и свойства материала 4) закалкой, при нагреве токами высокой частоты, с помощью которой в верхних слоях деталей создаются большие напряжения сжатия (для стали 700—900 Н/мм ). Все эти виды термического упрочнения дают возможность не только повысить усталостную прочность деталей, но и их износостойкость в два-три раза.  [c.245]

Защитные и износостойкие покрытия обеспечивают возможность создания новых изделий-композиций, сочетающих высокую долговечность (износостойкость, специальные свойства) с достаточной надежностью (трещиностойкостью) повышают эксплуатационную стойкость деталей машин и инструментов по сравнению со стойкостью, достигаемой известными способами термической обработки позволяют восстанавливать изношенную поверхность и, следовательно, снижают потребности в запасных частях. С помощью покрытий получают особые свойства рабочей поверхности (например, жаростойкость, теплопроводность, заданный коэффициент трения) они дают экономию дефицитных и дорогостоящих металлов, использующихся для объемного легирования.  [c.3]

Это может быть достигнуто созданием на деталях износостойких слоев с рациональным сочетанием термической обработки основного металла. Нанесение покрытий из нитрида титана на предварительно упрочненные детали СТБ позволили осуществить такое комбинированное упрочнение.  [c.121]

В настоящее время нет оснований утверждать, что имеются достаточные сведения о влиянии отдельных структурных составляющих на износостойкость металлов. Такое положение безусловно не способствует научно обоснованному выбору металлов и способов их термической обработки с учетом условий работы.  [c.27]

ПОВЫШЕНИЕ ИЗНОСОСТОЙКОСТИ СПЛАВОВ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКОЙ  [c.35]

В соответствии с классификацией [27] химико-термическую обработку (ХТО), применяемую для повышения износостойкости металлов и улучшению антифрикционных свойств, делят на две группы.  [c.36]

При легировании белого чугуна ванадием обеспечивается получение более высокой твердости (по сравнению с твердостью чугуна с присадкой хрома). В зависимости от содержания марганца и других элементов, а также от термической обработки структура металлической основы может быть аустенитной, ферритной или мартенситной. Эти чугуны обладают сравнительно хорошей износостойкостью, однако при аустенитной или ферритной матрице главным их преимуществом является относительно высокая для износостойких чугунов пластичность.  [c.65]

Титановые сплавы обладают очень низкими антифрикционными свойствами н не пригодны для изготовления трущихся деталей. Для повышения износостойкости титановые сплавы следует подвергать химико-термической обработке — цементации или лучше азотироваиию. Азотирование проводят при 850—950°С в течение 15—25 ч в диссоциированном аммиаке или сухом, очищенном от кислорода азоте. В результате азотирования получается тонкий (около 0,1 мм) слой, насыщенный азотом с HV 1000—1200.  [c.519]

Материалы целей и звездочек. Цепи и звездочки дотжны быть стойкими против износа и ударных нагрузок. По этим соображениям болыпинство цепей и звездочек изготовляют из углеродистых и легированных сталей с последующей термическо обработкой (улучшение, закалка). Рекомендации по выбору материалов и термообработки цепей и звездочек можно найти в соответствующих справочниках [4, 27]. Так, например, для звездочек рекомендуется применять стали 45, 40Х и др. для пластин цепей — стали 45, 50 и др. для валиков, вкладышей и роликов — стали 15, 20, 20Х и др. Детали шарниров цепей в большинстве случаев цементируют, что повьниает их износостойкость при сохранении ударной прочности. Перспективным является изготовление звездочек из пластмасс, позволяющих уменьшить динамические нагрузки и шум передачи.  [c.247]

Лазерная обработка успешно применяется для поверхностного упрочнения отливок из серого, ковкого и высокопрочного чугун()в. Благодаря оплавлению поверхности и образованию ледебуритной эвтектики (отбел чугуна) и мартенеhthoio подслоя твердость на поверхности достигает 7500—9000 МПа Частичное оплавление ухудшает чистоту поверхности. При отсутствии оплавления, твердость [юсле нагрева лазером повышается в результате закалки тонкого поверхностного слоя. Лазерная обработка повышает износостойкость чугунных деталей в 8—10 раз. Лазер может быть использован и для химико-термической обработки, В этом случае перед обработкой лучом лазера на поверхность наносят обмазки или порошки, содержащие насыщающие элементы (А), Сг, С, N, В и т. д.).  [c.226]

Цементация с последующей термической обработкой повышает предел выносливости стальных изделий вследствие образования в поверхностном слое значительных остаточных напряжений сжатия (до 400—500 МПа) и резко понижает чувствительность к концентраторам напряжений при условии непрерывной протяженности упрочненного слоя по всей упрочняемой поверхности детали. Так, после цементации на глубину 1000 мкм, закалки и отпуска хромомикслепой стали (0,12 % С 1,3 % Сг 3,5 % Ni) предел выносливости образцов без концентраторов напряжений увеличился от 560 до 750 МНа, а при наличии надреза — от 220 до 560 МПа, Цементованная сталь обладает в1)1Сокой износостойкостью и контактной прочностью, которая достигает 2000 МПа.  [c.238]


При большой окружной скорости (более 25...30 м/с) илп при работе с ударами, толчками, вибрацией корпусные детали полу-муфт и другие нагруженные детали выполняют из стали (отливки, прокат, штамповка, ковка). При меньших окружных скоростях применяют чугун (СЧ 21-40, СЧ 32-52, СЧ 35—56). Мелкие детали выполняются из конструкционных углеродистых сталей (прокат), а крупные ответственные детали — из поковок (сталь 40, 40ХН и др.). Рабочие поверхности трения подвергают термической обработке с целью повышения твердости и износостойкости. Упругие элементы изготавливают из пружинной стали, пластмасс, твердой резины. Поверхности трения сцепных муфт могут облицовываться фрикционными материалами (см. табл. 15.4).  [c.375]

Высокая поверхностная твердость и износостойкость при минимальном искажении формы зубьев достигаются с помощью азотирования (табл. 13) оно особенно ценно в тех случаях, когда после термической обработки не применяют отделочных операций (например, для колес с внутренними зубьями). По сопротивлению выкрашиванию азотированные зубчатые колеса при Л яя > Л яо и цементованные приблизительно равноценны. При относительно малых N e (и особенно при больших диаметрах зубчатых колес) азотирование уступает це ыентации [18].  [c.632]

Для изготовления деталей с высокой износостойкостью поверхностного слоя при твёрдости 750...1000НУ выбрана сталь 38ХВФЮА. Расшифруйте состав и определите группу стали по назначению. Назначьте режим термической и химико-термической обработки, приведите его обоснование, объяснив влияние легирования на превращения, происходящие при обработке данной стали. Опишите структуру и свойства стали после обработки.  [c.147]

Для изготовления деталей с высокой твердостью и износостойкостью поверхностного слоя применяют сталь марки 20ХГНМ. Расшифруйте состав стали и определите группу стали по назначению. Назначьте режимы химико-термической и термической обработки, приведите их обоснование. Какие свойства приобретает сталь после такой обработки  [c.155]

Легированные стали. В термически обработанном состоянии эти стали имеют высокий предел текучести и высокую твердость, что обеспечивает их высокую износостойкость в разнообразных условиях эксплуатации. Упрочнение от действия дисперсных частиц упрочняющей фазы достигается за счет гюдбора состава стали и оптимальной термической или химико-термической обработки.  [c.16]

Наряду с высокоуглеродистыми и легированными сталями в качестве износостойких материалов применяют чугун различных марок. Решающее влияние на триботехнические свойства чугуна оказывают включения графита и фосфоридная эвтектика чугуна, которые определяются структурой, зависящей от состава сплава, условий охлаждения литья и термической обработки. Износостойкость чугуна зависит также от содержания перлита увеличение перлита в структуре до 30% повышает износостойкость чугуна.  [c.18]

Углеродистые и легированные стали раньше других сплавов и композиционных материалов начали широко применять в различных узлах трения машин. Однако для обеспечения высокой износостойкости их подвергают методам термической и химико-термической обработки. Фазовые превра1цения в сталях в твердом состоянии обусловливают возможность осуществления всех видов термической обработки (закалка, отжиг, отпуск).  [c.160]

Использование технологий модификации первого поколения [165, 166 , основанных на однократном или многократном однотипном внешнем воздействии потоками тепла, массы, ионов и т.д., не всегда обеспечивает требуемые показатели износостойкости материалов при высоких температурах, контактных давлениях и действии агрессивных сред. Поэтому расширение области применения и эффективности методов модификации металлов и сплавов для их использования в экстремальных условиях эксплуатации связано с созданием комбинированных и комплексных способов упрочнения, сочетающих достоинства различных технологических приемов. Существует несколько базовых способов унрочнения, эффективность которых в сочетании с другими методами подтверждена производственной практикой [165, 166]. К таким методам относятся ионно-плазменное напыление, электроэрозионное упрочнение, поверхностное пластическое деформирование, а также термическая обработка. Модификация структуры и свойств материалов при этом происходит за счет сочетания различных механизмов, отличающихся физико-химической природой. На этой основе разрабатываются H(3BE)ie варианты технологий второго поколения, вклю-чаюЕцие двойные, совмещенные и комбинированные нроцессы [166-169], в которых применяются потоки ионов, плазмы и лазерного излучения. К данному направлению относятся обработка нанесенных  [c.261]

Необходимым оборудованием для радиационно-энергетической обработки твердо-сплавных режущих пластин и инструментов являются вакуумная термическая печь, установка для нанесения покрытий, ускоритель сильноточных ионных пучков. Выбор режимов термической, ионно-плазменной и ионно-лучевой обработки осуществляется в соответствии с известными и специально разработанными технологическими рекомендациями. Наиболее важные варьируемые параметры технологического процесса - состав и толщина наносимого покрытия, плотность тока сильноточного ионного пучка, а также режимы окончательной термической обработки износостойкого комплекса. Стабилизационный отжиг, являющийся окончательной технологической операцией, желательно проводить в условиях вакуума с контролируемой скоростью охлаждения, которая регулируется циркуляцией инертного газа. Режимы и вид предварительной термической обработки назначаются для каждой марки твердого сплава, исходя из задач его дальнейшей эксплуатации, определяемых условиями трибомеханического нагружения модифицированного инструмента в прогдессс пезаиня.  [c.267]

Дриц М. Е., Проникова Т. А. Влияние структуры цериевых чугунов на их износостойкость. — Металловедение и термическая обработка металлов ,  [c.577]

Испытания проводились в условиях возвратно-поступательного движения при комнатной температуре со смазкой и без нее Покрытие наносили на нижний образец плоскую пластину изготовленную из стали ЗОХГСА или дюралюмнна Д1Т верхние образцы — нз стали ЗОХГСА или дюралюмина Д1Т верхние образцы — из стали ЗОХГСА, бронзы БрАЖМц или дюралюмина Д1Т. Испытания показали, что никелевое покрытие без термической обработки не может быть использовано в качестве износостойкого  [c.16]

К термодиффузионным способам можно отнести известные разновидности химико-термической обработки — цементацию, азотирование, цианирование и относительно новые — ионное азотирование и карбонитрацию. Общая черта этих процессов — насыщение поверхностных слоев деталей и инструмента различными элементами за счет диффузии из окружающей среды при повышенных температурах с образованием насыщенных твердых растворов и износостойких химических соединений диффундируемого элемента с основным компонентом сплава.  [c.11]

Исследования микроразрушений при абразивном износе на образцах сталей типа Х12Ф1, 20X13 после химико-термической обработки показали, что наиболее благоприятным для повышения износостойкости является сочетание в структуре аустенита и карбидов. Так, срок службы пресс-форм из сталей с такой структурой для прессования огнеупорных изделий увеличился в 4—6 раз.  [c.30]



Смотреть страницы где упоминается термин Износостойкий Термическая обработка : [c.277]    [c.246]    [c.374]    [c.385]    [c.58]    [c.63]    [c.262]    [c.121]    [c.177]    [c.189]    [c.108]    [c.119]   
Материалы в машиностроении Выбор и применение Том 4 (1989) -- [ c.180 , c.188 ]



ПОИСК



Износостойкость

Ч износостойкий



© 2025 Mash-xxl.info Реклама на сайте