Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругость - Влияние на прочность и жесткость

Общий вывод упругость системы и условия приложения нагрузки оказывают огромное влияние на прочность и жесткость. В рассмотренных схемах величина напряжений может быть в 25, а прогиб примерно в 125 раз (схема 11) меньше, чем в исходной схеме 1.  [c.146]

Упругость - Влияние на прочность и жесткость 1. 144-148  [c.352]

Общий вывод из приведенного выше обзора заключается в том, что упругость системы и условия приложения нагрузки оказывают огромное влияние на прочность и жесткость. В диапазоне рассмотренных схем величина напряжений может быть в 25, а прогиб примерно в 300 раз (схема 11) меньше, чем в исходной схеме 1.  [c.148]


Для определения влияния геометрических, механических и других параметров на работу упругих чувствительных элементов пользуются соотношениями, полученными в теории расчета этих элементов на прочность и жесткость.  [c.372]

Теоретические расчеты показывают, что при разной жесткости связей системы (связь ходовых колес) максимальные моменты сил упругости в более жесткой ветви трансмиссионного вала значительно больше, чем моменты сил упругости, возникающие в ветвях при одинаковой жесткости связей. Большие максимальные моменты сил упругости, возникающие в быстроходной линии передач, при равенстве жесткости ветвей трансмиссионного вала не оказывают заметного влияния на прочность и выносливость  [c.335]

Несмотря на общность постановки задачи, конечные формулы имеют вид, позволяющий применять их в расчетной практике. К работе прилагаются таблицы коэффициентов, которые облегчают вычисление напряжений и прогибов пластинки для ряда частных случаев. В несколько иной и менее общей постановке аналогичная задача рассматривалась в работах [12], [13]. Известны также исследования влияния выдавки на прочность и жесткость круглой пластины для двух частных случаев осесимметрической нагрузки [2], [3], [13]. При некоторых упрощающих допущениях относительно ребра выдавки ставилась такая общая задача об упругом равновесии произвольно загруженной пластины с выдавкой любой формы, для которой граничные условия на контуре выдавки были были выражены при помощи аналитических функций комплексного переменного [14], [15].  [c.57]

Механизмы свободного хода имеют обширную классификацию как по назначению, так и по конструктивному выполнению, причем геометрия основных звеньев может быть самой разнообразной. При выборе того или иного типа механизма свободного хода руководствуются соображениями различного характера. Геометрию профиля звездочки выбирают из соображений простоты и дешевизны изготовления, надежности и долговечности механизма, равномерного распределения нагрузки между роликами, наибольшей прочности и жесткости сопрягаемых поверхностей, повышения нагрузочной способности механизма, минимального размаха ведущ,его звена, безударной и бесшумной работы механизма и др. Важными условиями при выборе типа профиля звездочки являются условия минимального влияния погрешностей изготовления, износа и упругих деформаций на процессы заклинивания и расклинивания механизма, позволяющие повысить нагрузочную способность, понизить стоимость изготовления и обеспечить условия взаимозаменяемости рабочих элементов. В механизмах свободного хода нашли применение различные профили звездочек  [c.84]


Повышение температуры приводит к понижению прочности и жесткости, что связано с довольно низкой теплостойкостью наполнителя и особенно эпоксидно-фенольного связующего, в котором при температуре выше 200° С начинаются процессы деструкции. Исключение составляют теплостойкие материалы РТП-100 и РТП-170, прочность которых при повышении температуры до 200° С снижается соответственно в 2,72 и 5 раз, а при дальнейшем нагревании возрастает и для материала РТП-100 при 600° С составляет 63% от исходного значения, а для материала РТП-170 при 400 С — 36%. Влияние повышенной температуры на механические свойства ориентированных материалов зависит от характера приложения нагрузки. В частности, если при растяжении вдоль волокон предел прочности материалов АГ-4-С и 27-63С при 200 С составляет соответственно 64,5 и 71,3% от исходных значений, а модуль упругости в среднем 92%, то при сжатии в тех же условиях предел прочности у стеклопластика 27-63С снижается в 9 раз, а у материала АГ-4-С в 2,6 раза. Предел прочности при срезе уменьшается при нагревании-До 200° С в среднем в 2,7 раза. Отмеченные явления объясняются возрастанием роли связующего в восприятии нагрузки при сжатии и срезе. Еще более интенсивно снижаются прочность и Жесткость при повышении температуры у хаотически армированных стеклопластиков АГ-4-В, П-1-1 и СНК-2-27. При нагревании до 200° С предел прочности при растяжении и модуль упругости уменьшаются в среднем в 2,5 раза, а дальнейшее повышение температуры приводит к быстрому разупрочнению. Так, предел прочности материала АГ-4-В при температуре 500 С составляет всего 8,8% от исходного значения.  [c.12]

Д.ЛЯ деталей ГТД основной спецификой первого этапа оптимизации технологии по критериям прочности яв.ляется необходимость моделирования при испытаниях на усталость весьма высоких эксплуатационных температур опасной зоны. В результате необходимо достаточно глубокое охлаждение патрона вибростенда для крепления образцов или деталей. Охлаждение диктуется не только стремлением повысить долговечность патрона, но и особыми требованиями к стабильности жесткости заделки j при испытаниях на высоких звуковых и ультразвуковых частотах циклов с ростом частоты быстро возрастает влияние упругой податливости заделки на уровень напряжений в образце а при фиксированном значении измеряемых амплитуд колебаний вершины образца А, а также на резонансную частоту /.  [c.394]

Установлено [73, с. 246 74 75], что наличие пигментов и наполнителей может оказывать значительное влияние на прочностные свойства пленок. В частности, изменяется подвижность макромолекул и, следовательно, температура перехода в стеклообразное и высокоэластическое состояние. Введение наполнителей в термореактивные полимерные композиции способствует повышению температуры их стеклования, модуля упругости и снижению разрывных удлинений. В то же время введение в термореактивную полимерную матрицу большинства минеральных пигментов и наполнителей, имеющих структуру частиц, близкую к глобулярной, практически не приводит к повышению прочности композиции. При этом лишь возрастает их жесткость, в  [c.69]

Анализ влияния жесткости навесного оборудования на динамические нагрузки в землеройно-транспортных машинах приводит к выводу о необходимости значительного снижения (в 5—8 раз) жесткости их конструкции в направлении резания без уменьшения прочности. При этом возникают трудности конструктивного порядка, связанные в первую очередь с увеличением веса и объема упругих элементов. Поэтому становится целесообразным применение пневматических и гидропневматических, а также механических шарнирно-рычажных устройств. Кроме того, уменьшение жесткости служит причиной больших колебаний рабочего органа даже ири кратковременных перегрузках, снижая производительность и долговечность конструкции и ухудшая качество работ. Таким образом, оптимальная упругая характеристика защитного устройства, очевидно, должна иметь переменную жесткость, т. е. быть нелинейной. В интервале рабочих усилий от О до номинального которое выбирается из условий устойчивой и экономичной работы машины, жесткость должна быть наибольшей, а при усилиях, превышающих номинальное, — наименьшей и позволяющей устройству поглотить избыток кинетической энергии при ударных нагрузках. Оптимальная идеальная упругая характеристика представлена на рис. 207 и близка к характеристикам типа релейных (с предварительным натягом — по В. П. Терских, или с ограничением по модулю).  [c.428]


Жесткость конструкции лопасти. В полете лопасти несущего винта имеют упругие изгибные и крутильные деформации, что предъявляет большие требования к их прочности вообще и особенно к динамической (усталостной) прочности. Эти деформации, кроме того, несколько изменяют аэродинамику лопасти, изменяя ее истинные углы атаки и углы взмаха. Поэтому вполне естественно, что лопасти различной жесткости оказывают различное влияние на условия работы несущего винта. Слишком упругие лопасти не могут обеспечить достаточную жесткость, так как они весьма чувствительны к случайным возмущениям потока и снижают эффективность управления несущим винтом. Чрезмерно жесткие лопасти имеют большой вес, неспособны поглощать неравномерность действия на них аэродинамических и массовых сил и вследствие этого невыгодны с точки зрения вибраций.  [c.64]

Силы, периодически изменяющиеся по величине или направлению, являются основной причиной возникновения вынужденных колебаний валов и осей. Однако колебательные процессы могут возникать и от действия постоянных по величине, а иногда и по направлению сил. Свободное колебательное движение валов и осей может быть изгибным (поперечным) или крутильным (угловым). Период и частота этих колебаний зависят от жесткости вала, распределения масс, формы упругой линии вала, гироскопического эффекта от вращающихся масс вала и деталей, расположенных на валу, влияния перерезывающих сил, осевых сил и т. д. Уточненные расчеты многомассовых систем довольно сложны и разрабатываются теорией колебаний. Свободные (собственные) колебания происходят только под действием сил упругости самой системы и не представляют опасности для прочности вала, так как внутренние сопротивления трения в материале приводят к их затуханию. Когда частота или период вынужденных и свободных колебании со-  [c.286]

При конструировании, кроме удельной жесткости, необходимо учитывать условия эксплуатации, так как они влияют на долговечность многих конструкций. Ограничения связаны с прочностью материала при усталостном нагружении, высокотемпературной длительной прочностью, коррозией под напряжением, ростом трещин вокруг надрезов и дефектов. Хотя статические свойства металлических сплавов значительно повышаются в результате влияния различных механизмов упрочнения, такие материалы часто теряют вязкость и долговечность при динамических условиях работы. Одной из наиболее важных задач при создании композиционных материалов наряду с увеличением статической и динамической прочности является снижение чувствительности к трещинам и дефектам. Уменьшение чувствительности к динамическим нагрузкам достигается за счет более быстрого поглощения энергии упругим компонентом композиционного материала, чем пластичным, который обычно накапливает повреждения. Понижение чувствительности к образованию трещин достигается путем намеренного перераспределения накапливания повреждений в таких компонентах композиционного материала, которые не снижают его несущую способность.  [c.13]

На механические свойства полимерных покрытий оказывают влияние не только химическое строение полимера, но и структура его макромолекул, так как свойства полимера заметно изменяются с переходом его из аморфного в кристаллическое состояние. С увеличением степени кристалличности возрастает плотность, твердость, жесткость и прочность пленки, но снижается ее упругость и эластичность.  [c.109]

Требования жесткости оказывают влияние и на выбор материала детали. Так, известно, что прочностные характеристики сталей непрерывно повышаются, тогда как значения модулей упругости остаются почти неизменными. Для валов из высокопрочной стали, диаметр (из условия прочности) может получиться малым, а параметры жесткости — превышающими допустимые значения. В связи с этим нередко приходится увеличивать диаметр вала до значения, при котором может быть обеспечена прочность вала из стали с более низкими механическими качествами, следовательно, и более дешевой.  [c.47]

Двусторонние лопатки применяются для определения упругих постоянных и прочности при растяжении. Для образцов этой формы в целом характерно неоднородное напряженное состояние, однако при правильном выборе размеров образца можно обеспечить однородное напряженное состояние в его рабочей части. Интересно отметить, что несмотря на неоднородное напряженное состояние для образца в целом, двусторонние лонатки при определении прочности на растяжение высокомодульных армированных пластиков показывают более высокие и стабильные результаты, чем образцы-полоски. Этот факт, противоречащий результатам испытания стеклопластиков, объясняется меньшей изгибной жесткостью рабочей части образца и, следовательно, меньшим влиянием изгиба вследствие неточности установки образцов в испытательной машине.  [c.64]

Упрочнение алюминия и его сплавов более дорогими волокнами В, С, AI2O3 повышает стоимость КМ, но при этом улучшаются некоторые его свойства. Например, при армировании борными волокнами модуль упругости увеличивается в 3 - 4 раза, углеродные волокна способствуют снижению плотности. На рис. 14.36 и ниже показано влияние объемного содержания волокон бора Vb на прочность и жесткость композиции алюминий — бор  [c.465]

Изложены результаты экспериментального исследования характеристик прочности и жесткости слабоконических и цилиндрических оболочек из высокопрочных и высокомодульных КМ на полимерной матрице. Значительное внимание уделено исследованию влияния ориентации стеклотканевого наполнителя на характеристики прочности и упругости, а также на критические напряжения гладкой круговой цилиндрической оболочки, воспринимающей осевые сжимающие усилия. Характеристики прочности и жесткости определены непосредственно на оболочках. Приведены результаты сравнения экспериментальных данных с )асчетными, полученными по формулам теорий анизотропных тел 9] и ортотропных (одно- и многослойных) оболочек [24]. Дано краткое описание характера разрушения оболочек из различных материалов при нормальной и повышенной температурах.  [c.263]


Композиты магний — бор Vf = = 40-н45%) имеют высокие абсолютные и удельные характеристики прочности и жесткости [21] из-за низкой плотности матричной составляющей и высоких характеристик волокон. Относительное удлинение при растяжении вдоль волокон 0,5%, прочность при изгибе 1200—1300 МПа, модуль упругости — до 220 ГПа, коэффициент Пуассона 0,25. О влиянии состава боромагния на прочностные характеристики можно судить по данным табл. 4.24.  [c.114]

Существующие в настоящее время методы расчета реверсивных обжимных станов, таких как блюминги, слябинги, универсальные станы и др., базируются на приближенных представлениях о характере действующих нагрузок, которые необходимо знать для проведения расчетов деталей главных линий на прочность и выносливость. Для определения этих нагрузок эффективным средством является электронное моделирование. На математической машине непрерывного действия может быть построена полная модель электромеханической системы привода, позволяющая с помощью включений, аналогичных действию оператора на стане, воспроизводить динамические процессы. Такая модель позволяет изучить влияние характера изменения момента двигателя и момента прокатки, а также свойства приведенной системы на процессы, протекающие в главной линии, и дает возможность выяснить наиболее опасные режимы работы стана [21]. Всесторонне изучить протекающие в главной линии процессы при широком изменении величин отдельных масс и жесткостей связей с целью выбора паилуч-шего их сочетания. При решении задач в такой постановке южнo определить моменты, возникающие в упругих связях под действием внешних сил, выбрать места расположения предохранительных устройств, оценить загрузку двигателя при известных моментах прокатки и выяснить режимы работы станов, обеспечивающие наивысшую производительность при максимальной тепловой нагрузке двигателя [114, 140].  [c.160]

Получение корректных экспериментальных данных о влиянии скорости деформации на сопротивление, как показано в предыдущем параграфе, требует сохранения определенного закона нагружения в процессе испытания во всем скоростном диапазоне испытаний. Жесткость цепи нагружения испытательной машины, включающей образец из исследуемого материала, динамометр и соединительные элементы, в зависимости от сопротивления материала и его изменения в процессе испытания оказывает влияние на реализуемый закон нагружения (деформации) материала в объеме рабочей части образца [171]. Связанное с этим отклонение параметра испытания от номинального не превысит допустимых пределов при ограничении жесткости цепи нагружения. Влияние жесткости особенно существенно при резком изменении скорости деформации или нагрузки, имеющем место при переходе от упругого к упруго-пластическому поведению материала вблизи верхнего и нижнего пределов текучести, предела прочности, у точки разрушения. В связи с этим рассмотрим влияние жесткости цепи нагружения на закон деформирования. Основное внимание уделим рассмотрению отклонения от параметра испытания e = onst.  [c.69]

Упругие и прочностные свойства композиционных материалов, армированных вискеризованными волокнами, определяются не только основной арматурой и матрицей, но и свойствами, объемным содер.жанием и упаковкой нитевидных кристаллов. Влияние последних на изменение свойств материалов, зависящих в основном от жесткости и прочности модифицированной матрицы, является доминирующим. Это следует из анализа экспериментальных данных, приведенных на рис. 7.8. Коэффициент вариации для Rx , йх2, превышал 10 %  [c.213]

На процесс перехода через предел прочности очень сильное влияние может оказывать жесткость динамометрических устройств. Экспериментально это было изучено только для пластичных дисперсных систем В. П. Павловым и Г. В. Виноградовым [П ]. Если предел прочности выражен очень резко (в системе совершается сильное разрушение структуры), то при использовании мягких динамометров переход через этот предел сопровождается огромным увеличением скорости деформации. Когда начинается разрушение структуры в материале, его сопротивление деформированию снижается. Вследствие запасенной в динамометре упругой энергий связанная с ним измерительная поверхность приобретает возможность перемещаться навстречу движению второй поверхности. В случае мягкого динамометра угол поворота одной поверхности относительно другой может быть значительным. Поэтому при быстром разрушении структуры в материале происходит значительное увеличение скорости относительного перемещения измерительных поверхностей, т. е. скорости деформации. Такое возрастание скорости, в свою очередь, вызывает усиление изменения структуры материала. С другой стороны, по мере углубления разрушения структуры и снижения действующего в материале напряжения возрастает интенсивность обратного процесса структурообразова-ния. В результате скорость деформации начинает снижаться.  [c.74]

Если в отношении прочности пластмассы вполне удовлетворяют требованиям строительства, то в отношении жесткости этого утверждать нельзя. Модуль упругости наиболее жестких пластмасс при сжатии, растяжении и изгибе не выходит за пределы 400 ООО кГ1см , снижаясь до 20 ООО—30 ООО кГ1см для средних по жесткости пластмасс и до 1000—3000 кГ1см и ниже для пленок. По сравнению с металлами и другими конструкционными материалами это очень мало. Влияние же на деформации пластмасс продолжительности действия нагрузки уменьшает их и без того небольшую жесткость. Отсюда следует, что использование пластмасс в строительных конструкциях невозможно без учета их относительно малой жесткости и склонности к ползучести, в результате которой деформации увеличиваются, а прочность снижается в значительно большей степени, чем у конструкций, выполняемых из традиционных материалов.  [c.28]


Смотреть страницы где упоминается термин Упругость - Влияние на прочность и жесткость : [c.159]    [c.220]    [c.73]    [c.218]    [c.131]    [c.317]    [c.203]   
Основы конструирования Справочно-методическое пособие Кн.3 Изд.2 (1977) -- [ c.144 , c.148 ]



ПОИСК



Жесткость упругая

Прочность и жесткость

Упругость, влияние



© 2025 Mash-xxl.info Реклама на сайте