Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические свойства сплавов и методы их изучения

Методы, предназначенные специально для изучения механических свойств сплавов в температурном интервале хрупкости, позволяют выявить раздельно элементарные процессы, происходящие при нагреве и охлаждении сплавов, и элементарные свойства, совокупность которых определяет сопротивление сплавов образованию горячих трещин. Речь идет в первую очередь о таких характеристиках, как прочность и пластичность сплавов в температурном интервале хрупкости и ширина этого интервала. Испытания проводят на образцах из основного металла в изотермических условиях при температурах кристаллизации или температурах околошовной зоны. При этом скорости охлаждения металла значительно меньше, чем в реальных условиях,  [c.113]


Определению модуля упругости, даже при комплексном изучении механических свойств сплавов, до сих пор уделялось сравнительно мало внимания. Данные о нем для различных сплавов и сталей при повышенных температурах можно найти в литературе лишь в немногих случаях. Одна из основных причин такого положения заключается в том, что трудно экспериментально определить модуль упругости при высоких температурах статическим методом.  [c.72]

Теория термической обработки является центральной учебной дисциплиной в подготовке металловедов и термистов. Перед ее изучением студент должен освоить физическую химию, кристаллографию, металлографию, учение о дефектах кристаллической решетки, изучить механические свойства и методы испытания металлов. В свою очередь теория термической обработки является базой для изучения технологии термической обработки и таких профилирующих спецкурсов металловедения, как Легированные стали и Сплавы цветных и редких металлов .  [c.5]

При изучении влияния размера зерна на механические свойства сплавов оказывается небезразличным метод получения заготовок с разными размерами зерен. Если рост зерна (например, в сплавах на никелевой основе) достигается увеличением температуры закалки, то полученные данные не характеризуют зависимости сопротивления ползучести от размера зерна однозначно, так как увеличение температуры закалки влияет не только на интенсификацию процессов рекристаллизации, ной на процессы растворения карбидов и у -фазы перед их последующим выделением и гомогенизации твердого раствора.  [c.240]

Кратко обобщены результаты работ по исследованию структур металлов методом микротвердости. Рассмотрены основные направления применения метода микротвердости для исследования металлов. Приведены экспериментальные данные, подтверждающие целесообразность применения метода микротвердости в целях физико-химического анализа, в области технологии металлов и металловедения, для изучения пластической и упругой деформации металлов и сплавов при механической обработке. Особое внимание обращено на изучение влияния облучения на физико-химические и механические свойства металлов. Описана аппаратура, применяемая для исследовательских работ в агрессивных средах.  [c.264]

Статьи, заключенные в данный сборник, содержат результаты исследований, выполненных за последние годы в области изучения микроструктурных особенностей деформационных процессов и разрушения в поликристаллических металлических материалах (в том числе композиционных) в условиях теплового и механического воздействия. При проведении исследований использованы методы качественной и количественной тепловой микроскопии в сочетании с другими физическими методами. В ряде работ содержатся сведения о методиках и аппаратуре, применяемых для получения прямых экспериментальных данных об изменениях микростроения и уровня механических свойств изучаемых материалов. Значительное внимание в сборнике уделено изучению микроструктурных особенностей развития пластической деформации сталей и сплавов, биметаллических композиций и сварных соединений при тепловом воздействии в условиях статического и циклического нагружения.  [c.4]


Назначение. Проведение испытаний механических свойств металлов, сплавов и неметаллических материалов, поковок, отливок и деталей на специальных образцах изучение прочности деталей в условиях длительных испытаний на износ, кручение, ползучесть и др. контроль технологических свойств металлов и деталей на выдавливание, изгиб, скручивание, сжатие проведение исследовательских работ по усовершенствованию методов механических испытаний, разработке и внедрению новых методов и новых испытательных машин и приборов.  [c.180]

При изучении сплавов, имевших наибольшую концентрацию примесей, с помощью методов определения электросопротивления и механических свойств было обнаружено, что перед рекристаллизацией, но после уменьшения концентрации вакансий проходит стадия возврата. Исследование тонких металлических фольг в электронном микроскопе показывает, что эта стадия соответствует увеличению совершенства блочной структуры, характерной для металла, подвергнутого холодной обработке. В результате этого исследования было установлено, что примеси, присутствующие в металле, влияют на процесс возврата. Кроме того, полученные данные подтвердили результаты измерений электросопротивления, согласно которым з очищенном зонной плавкой алюминии стадия возврата вообще отсутствует. Поэтому изучение рекристаллизации в этом металле имеет особое значение, поскольку здесь отсутствует влияние возврата на исследуемый процесс.  [c.458]

Необходимы исследования на металлах и сплавах, структура которых отлична от г.ц.к. Хотя механические испытания не являются прямым методом изучения основных свойств закаленных дефектов, например энергии об-разования энергии активации миграции и т. д., было показано, что они весьма полезны при изучении природы стоков для закалочных вакансий. Кроме того, механические испытания оказываются важной методикой для исследований взаимодействия дислокаций с различными типами дефектов. Известно, что эксперименты по закалке некоторых металлов, таких, как железо, и других о. ц. к. металлов и некоторых сплавов довольно затруднительны вследствие растворения в этих металлах газов, а также реакций, протекающих в твердом состоянии. Поэтому должны быть приняты соответствующие предосторожности для уменьшения такого рода влияния.  [c.267]

Специальными методами — рекристаллизацией, медленным охлаждением расплава и т. п.— получают крупные монокристаллы различных металлов, сплавов, каменных пород и т." п. и на этих монокристаллах детально изучают их механические свойства. В частности, результаты изучения свойств монокристаллов при упругой деформации показывают, что, несмотря на раннее наступление пластической деформации, обусловленное низкими пределами упругости, путем измерения достаточно малых деформаций у всех монокристаллов может быть установлена область линейной зависимости между напряжениями н деформациями.  [c.100]

В целом эта тенденция привела к новым требованиям при проектировании и расчетах конструкций и к изучению таких свойств металлов и сплавов, которых не знала наука об испытании материалов еще 30—40 лет тому назад. Достаточно назвать такие показатели механических свойств, как сопротивление малоцикловой усталости, способность к торможению развивающейся трещины, способность к локальной пластической деформации при наличии трещин, прочность и пластичность при двухосном растяжении и т. д. Необходимость изучения этих свойств, в свою очередь, вызвала появление многих новых методов исследования и повлекла за собой значительную дифференциацию различных областей науки о механике материалов и, естественно, их более узкую специализацию.  [c.3]

Процесс старения исследуют прямыми методами, наблюдая изменения структуры сплавов как под оптическим, так и под электронным микроскопом и при помощи рентгеноструктурного анализа. Косвенными методами изучения старения являются определения твердости, механических свойств, объемных изменений, электрического сопротивления, коэрцитивной силы и других физических свойств.  [c.226]


В пособии изложены методы изучения строения и основных свойств материалов, приведены лабораторные работы по основным разделам курса (макро- и микроисследования, методы определения температур превращений и фазового состава сплавов, механических и физикохимических свойств, термическая обработка стали, чугуна и цветных сплавов), задачи по разбору диаграмм состояния сплавов и их микроструктур и рациональному выбору состава и обработки сплавов и других материалов. Приведена систематизированная классификация основных металлических сплавов, а также полимерных и других неметаллических материалов, используемых в промышленности, и указана область их наиболее широкого применения.  [c.2]

Изучение физических и механических свойств также значительно расширяет знания о природе металлов. Эти методы дают не только качественную, но и количественную оценку свойств металлов, позволяя определить, в какой степени изменяются в нужном для техники направлении свойства сплава при изменении его химического состава, структуры, условий обработки и т. д.  [c.11]

Изучение физических и механических свойств также значительно расширяет знания о природе металлов. Во-первых, эти методы дают не только качественную, но и количественную оценку свойств металлов, позволяя определить, в какой степени изменяются в нужном для техники направлении свойства сплава при изменении его химического состава, структуры, условий обработки и т. д. Во-вторых, эти методы позволяют определить превращения в сплавах, которые часто не могут быть достаточно четко обнаружены другими методами исследования-металлов.  [c.15]

Рентгеновский анализ при всей его ценности для изучения природы сплава не дает необходимых результатов, например, при исследовании начальных стадий распада твердых растворов. В этом случае более чувствительны методы, основанные на измерении физических свойств, так как электросопротивление или магнитные свойства заметно изменяются уже в начальной стадии распада твердого раствора. Так, например, старение технического железа сопровождается резким изменением физических и механических свойств, что указывает на протекание процессов распада твердого [)аствора в то же время рентгеновский анализ и другие структурные методы исследования не отмечают изменений в структуре технического железа при старении.  [c.16]

Влияние бериллия на механические и литейные свойства сплава Мл5 исследовали на образцах и пробах, отливаемых на машине литья под давлением (рис. 41). Бериллий вводили в виде двойной лигатуры А1—Ве (5,3% Ве). В интервале изученных концентраций бериллий мало влияет на свойства сплава. Подсчет средней величины зерна методом секущих показал, что при литье под давлением не наблюдается огрубления зерна, характерного для литья в песчаные формы, вплоть до содержания 0,1% Ве. Ниже приведена средняя величина зерна сплава Мл5 в зависимости от содержания бериллия при литье под давлением [7]  [c.77]

Зная пути расхода энергии, можно оценить вклад каждого процесса в общий баланс энергетических затрат, что даёт возможность выбирать наиболее эффективные методы борьбы с разрушением. Механизм абразивного изнашивания в условиях эксплуатации лопаток асфальтосмесителей представляет собой сложный, процесс, охватывающий комплекс явлений разрушения поверхности трения в результате механического воздействия абразивных частиц, обладающих высокой твёрдостью и прочностью. Определение наиболее существенных факторов, в значительной степени влияющих на характер взаимодействия в конкретных условиях изнашивания, невозможен без детального изучения самого процесса разрушения, исследования микрорельефа изношенных поверхностей, влияния структурного состояния и свойств сплавов на их способность к сопротивлению абразивному изнашиванию.  [c.40]

В сборнике показаны уровень и результаты исследований в области создания и совершенствования методов и средств тепловой микроскопии и изучения строения и свойств металлов и сплавов при механическом нагружении и тепловом воздействии. Приведены сведения о новой аппаратуре для низко- и высокотемпературного деформирования при статическом и циклическом нагружении, обладающей расширенными экспериментальными возможностями.  [c.2]

Для изучения металлов и сплавов нередко используют физические методы исследования (тепловые, объемные, электрические, магнитные). В основу этих исследований положены взаимосвязи между изменениями физических свойств и процессами, происходящими в металлах и сплавах при их обработке или в результате тех или иных воздействий (термических, механических и др.). Наиболее часто применяют дифференциальный термический анализ (построение кривых охлаждения в координатах температура— время) и дилатометрический метод, основанный на изменении объема при фазовых превращениях. Для ферромагнитных материалов применяется магнитный анализ  [c.11]

Для получения информации об упругих свойствах аморфных сплавов используют метод изгиба при многочисленных модификациях этой методики 12.141. Следует однако, отметить, что как и в случае одноосного растяжения, здесь наблюдается высокая чувствительность механических характеристик к геометрии и качеству поверхности ленточных образцов. Применение метода внутреннего трения для изучения неупругих свойств аморфных сплавов ограничено сложностью трактовки получаемых результатов в связи с отсутствием удовлетворительной модели. этого явления применительно к аморфному состоянию [12.151.  [c.172]

В машиностроении для изготовления деталей общего назначения широко применяют сталь (табл. 0.2), чугун (табл. 0.3), сплавы цветных металлов (табл. 0.4), пластмассы (табл. 0.5), резину. Свойства, методы получения, обозначения этих материалов рассмотрены в курсе Технология металлов . В табл. 0.2- .5 приведены маркировка, механические характеристики и для некоторых материалов дано примерное применение. Правильный выбор материала может быть сделан только на основе расчетов, а также сопоставления нескольких вариантов. В дальнейшем при изучении конкретных деталей будет отмечаться, из каких  [c.16]


В последнее время все большее внимание уделяется изучению влияния, оказываемого наложением электрического, магнитного и ультразвукового полей, а также ядерным облучением на структуру и свойства металлов и сплавов в твердом состоянии. В ряде случаев, комбинируя несколько методов обработки с легированием, стремятся использовать различные механизмы превращений и получить металлы и сплавы с необходимыми структурой и свойствами. Так, для упрочнения металлов и сплавов сочетают следующие виды обработки термическую и механическую (термо-механическая обработка), термическую и магнитную (термо-магнитная обработка), термическую, механическую и магнитную (термо-механико-магнит-ная обработка), термическую и ультразвуковую (термо-ультразву-ковая обработка), химико-термическую и ультразвуковую (термо-химико-ультразвуковая) и др.  [c.216]

Положение усугублялось еще и тем, что фундаментальная наука сильно отставала от потребностей практики и решение различных проблем, возникавших при разработке новых сплавов, проводилось методом, который лучше всего можно охарактеризовать как метод проб и ошибок. Исследователям, по существу, было ясным только то, что механические примеси ухудшают свойства этих металлов. В рамках этого положения и проводились соответствующие исследования, хотя единой их линии не было — каждая лаборатория проводила изучение образцов, "загрязненных" по-свое-  [c.110]

Механические свойства сплава в отливках зависят от мак-ро- и микроструктурных факторов. К макроструктурным факторам следует отнести характер макроструктуры и пористости. Как было показано выше, сплавы типа, Л1л5 на основе системы Мд—А1 при литье под давлением образуют мелкое, равноосное макрозерно по всему сечению отливки, и только в от-чЯивках из сплава Мд4-0,4% Л1 присутствует столбчатая зона. Мелкозернистая макроструктура. способствует повышению прочности. Микроструктурные факторы могут быть сведены к повышенной плотности дислокаций и структурным факторам, препятствущим движению дислокаций в. процессе деформации. Чтобы изучать влияние этих факторов на повышение прочности, необходимо отделить влияние пористости, поэтому при изучении механизма упрочнения использовали образцы одинаковой плотности (пористость образцов, определяемая методом гидростатического взвешивания, во всех трех видах различалась на 0,1—0,2%).  [c.48]

Группа советских ученых занималась исследованием механических свойств металлов и сплавов. Среди них почетное место занимает действительный член АН УССР Н. Н. Давиденков, опубликовавший ряд замечательных работ по актуальным вопросам металловедения, в частности Измерение остаточных напряжений в трубах (1931 и 1935 гг.). Большое число работ по прочности и пластической деформации было проведено действительным членом АН УССР С. В. Серенсеном, чл.-корр. АН СССР И. А. Одингом, доктором техн. наук И. В. Кудрявцевым и др. Много научно-исследовательских работ по изучению механических свойств железнодорожных изделий (рельсов, вагонных осей, бандажей, пружин) было опубликовано проф. Н. П. Щаповым. Помимо этого он много работал по исследованию механизма пластической деформации металлов и по методике определения механических свойств стали. Проф. Я. Б. Фрицман известен как автор многих исследований по теории прочности и методам механических испытаний металлов.  [c.189]

Сущность схватывания металлов едина во всех его проявлениях, поэтому изучать его можно как при совместном пластическом деформировании, так и при трении [1]. Первая группа методов удобна для изучения схватывания пластичных металлов и сплавов, как правило, одноименных, или обладающих близкими механическими свойствами (близким сопротивлением пластическому деформированию). К этой группе относится, в частности, метод, заключающийся в деформировании листовых образцов плоскими и симметрично наклониыми пуансонами с применением капсул [2] и без них [3].  [c.63]

Определение коррозии по изменению механических свойств металла. Этот метод часто используют при изучении коррозии алюминиевых сплавов. Однако необходимо помнить, что при отсутствии межкристаллитной коррозии механические свойства металлов в результате коррозии обычно не меняются и этим показателем лишь косвенно определяют изменение сечения образца вследствие коррозии. Действительно, если определить нагрузку, требующуюся для разрыва образца до коррозии и эту же нагрузку после того, как металл прокорродировал, то можно выделить фиктивный предел прочности, характеризующий изменение сечения образца. Обычно определяют предел прочности сгв кгс1ммЦ и удлинение (Ь (%) при растяжении образца.  [c.58]

Из оксидных керметов наиболее изучен и получил распространение кермст из оксида алюминия на связке из металлического хрома или некоторых его сплавов. Кермет, содержащий корунд и хром, обладает хорошими электрофизическими, тепловыми и механическими свойствами. Хорошая термостойкость и сопротивление тепловому удару определили его пригодность для изготовления деталей реактивных двигателей. В керметах корунд — хром содержание каждого компонента может изменяться от 30 до 70%. При этом, естественно, будут меняться свойства соответственно увеличению керамического или металлического компонента. Технология изготовления керметов, содержащих корунд и хром, не отличается от обычной схемы. Предпочтительный метод формования — прессование. Обжигают кермет в вакууме или защитном газе при 1650°С.  [c.244]

Ограниченное число работ по изучению фазовых превращений в порошковых железомарганцевых сплавах, объясняется прежде всего большими трудностями при получении порошков железомарганцевых сплавов, которые возникают вследствие высокой химической активности марганца [204, 205]. Несколько работ посвящено поискам простого и надежного способа получения легированного м[арганцем железа методами порошковой металлургии термодиффузионное насыщение пористых железных прессовок [205] и порошков из точечных источников [206], диффузионное насыщение тонкого слоя железного порошка из твердой марганцевой засыпки [206], спекание смесей порошков железного железа и ферромарганца [205]. Последним способом Киффер и Бенисовский получали пористые спеченные марганцовистые стали с содержанием марганца от 2 до 16% и углерода от О до 2%, а также исследовали их механические свойства. Наиболее простой и экономичный метод получения качественной порошковой высокомарганцевой стали, близкой по составу к стали Гадфильда, был разработан авторами работ [199],— это спекание пористых прессовок из смеси порошков железа, ферромарганца и сажи и последующим динамическим горячим прессованием в штампе.  [c.305]

Книга содержит оригинальные исследования, приведшие к установлению фундаментальных представлений в физике пластичности и прочности кристаллов. Они лежат в основе современного учения о механических свойствах кристаллических тел. В книге выдвинуты и доказаны взгляды о том, что причиной разрушения кристаллов являются дефекты, создаваемые предшествующей этому процессу пластической дефорхмацией. Открыты и изучены явления, определяющие возникновение и образование линий скольжения в кристаллах, обнаружен и исследован новый механизм пластического формоизменения кристаллов. Предложен метод изучения механизмапластичнос- ти путем исследования областей локальных нарушений кристалла вблизи уколов, царапин, вершин трещин и т. п. Обнаружены прозрачные металлы — галоидные соединения серебра п таллия и сплавы на их основе, обладающие металлоподобными механическими свойствами, и установлена связь механических свойств кристаллов со свойствами атомов,их образующих.  [c.2]


Во многих случаях необходимо определять основные механические характеристики при испытании малых образцов диаметром 3—6 мм и меньше (микрообразцов) и судить по этим характеристикам об интегральных свойствах материала в целом и о локальных свойствах отдельных исследуемых зон. Необходимость в применении малых образцов возникает, например, при исследованиях дефицитных материалов, изысканиях новых сплавов, изучении неоднородностей в свойствах отдельных зон по объему детали, исследованиях аварийных деталей, сварных и паяных швов и т. д. По результатам испытаний микрообразцов можно получить весьма важные теоретические и практические данные. Для того чтобы приблизить такие исследования к реальным условиям эксплуатации, необходимы создание специализированных машин (для испытаний при разных температурах, в вакууме, в различных газовых и жидких средах) и разработка новых методов микроиспытаний на ползучесть, длительную прочность и т. п. [205].  [c.76]

Метод электроэрозионной обработки металлов не обеспечп-вает решенР1я всех задач, возникающих при обработке твердых сплавов и других металлических материалов, не поддающихся или плохо поддающихся механической обработке. Некоторые задачи решаются с помощью применения химической энергии. В процессе изучения химического воздействия различных реактивов на металл установлено, что продукт реакции образуется в виде пленки, изолирующей металл от реактива и препятствующей дальнейшему протеканию реакции. Если пленку удалить, то реакция восстанавливается, в результате чего возникает новый слой пленки, который, достигнув определенной толщины, вновь препятствует реакции п т. д. Возможность обеспечения определенного состава и свойств пленки, скорости ее образования и удаления делает процесс управляемым.  [c.461]

Уважаемые читатели, эта книга вводит вас в курс физико-хи-мических основ материаловедения и методов придания различным материалам таких с1войств, которые требуются для решения инженерных задач разных направлений. Вы узнаете, почему природные и искусственно созданные материалы имеют различную электропроводность, магнитные, механические и диэлектрические свойства, как связаны эти свойства друг с другом, как и в каких пределах их можно изменить. Изучая современные методы получения и обработки материалов, вы познакомитесь со способами изменения этих свойств и, что особенно важно, научитесь прогнозировать изменение свойств материалов при изменении их состава, структуры или состояния. Кроме того, вы познакомитесь с современными методами врздействия на материалы, позволяющими управлять свойствами специально созданных смесей, химических соединений и сплавов. Одновременно с изучением этих вопросов, вы более глубоко познакомитесь с физическими и химическими свойствами элементов, информация о которых заложена в периодической системе Д.И. Менделеева. Особо отметим, что строение атомов химических элементов определяет структуру и энергию образуемых ими химических связей, которые, в свою очередь, лежат в основе всего комплекса свойств веществ и материалов. Лишь опираясь на понимание химического взаимодействия атомов, можно управлять процессами, происходящими в веществах, и получать заданные рабочие характеристики.  [c.5]


Смотреть страницы где упоминается термин Механические свойства сплавов и методы их изучения : [c.159]    [c.6]    [c.145]    [c.277]    [c.325]    [c.405]   
Смотреть главы в:

Технология металлов и конструкционные материалы Издание 2  -> Механические свойства сплавов и методы их изучения



ПОИСК



189 —Механические свойства сплавов Д-16 и Д-20 — Механические свойства

ИЗУЧЕНИЕ СИЛ

Метод механический

Методы изучения

Сплавы Механически:: свойства

Сплавы Механические свойства



© 2025 Mash-xxl.info Реклама на сайте