Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ДИНАМИКА СПЛОШНОЙ СРЕДЫ Силы в механике сплошной среды

В динамике сплошных сред принято выделять два класса действующих на частицы среды сил объемные (иногда их еще называют массовыми) и поверхностные. Под объемными силами понимают такие, которые действуют на элементы объема, как, например, силы веса, тяготения, инерции, электростатического притяжения или отталкивания, силы действия магнитного или электрического поля на частицы среды. К поверхностным относят силы, которые при принятом в механике сплошных сред макроскопическом подходе действуют на элементы поверхности, как, например, силы давления, и вообще силы, действующие со стороны потока на поверхность погруженного в него тела, или реакции тела на поток, силы внутреннего трения (вязкости) в среде.  [c.57]


При отсутствии касательных сил трения, два параллельно движущихся слоя идеальной жидкости могли бы иметь совершенно произвольные скорости, свободно скользить друг относительно друга. Этот факт находится в явном противоречии с принципом непрерывности поля скоростей, положенным ранее в основу кинематики и динамики жидкости и газа. Можно было бы ожидать при этом, что схема идеальной жидкости должна привести к результатам, далеким от реальности, бесполезным для практики. Однако это не так. Теория идеальной жидкости в большинстве случаев с достаточной для практики точностью описывает обтекание тел, оценивает распределение давлений по поверхности обтекаемых тел, дает суммарную силу давления потока на тело и мн. др. Причиной достаточного совпадения с опытом столь, па первый взгляд, отвлеченной, идеализированной схемы служит дополнительное допущение о сохранении и для идеальной жидкости принципа непрерывности распределения механических и термодинамических величин в движущейся среде. В этом фундаментальном принципе механики сплошной среды заложена главная качественная сторона физического механизма молекулярного обмена в жидкостях и газах, приводящего, с одной стороны, к непрерывности полей физических величин и, с другой, к наличию трения и теплопроводности.  [c.124]

Помимо общих методов изучения движения тел под действием сил, в Д. рассматриваются спец. задачи теория гироскопа, теория механич. колебаний, теория устойчивости движения, теория удара, механика тел переменной массы и др. С помощью законов Д. изучается также движение сплошной среды, в частности упруго и пластически деформируемых тв. тел, жидкостей и газов (см. Упругости теория, Пластичности теория, Гидроаэромеханика, Газовая динамика). Наконец, в результате применения методов Д. к изучению движения конкретных объектов возник ряд спец. дисциплин небесная механика, внеш.  [c.159]

Вместе с тем появились и существенные дополнения, среди которых следует отметить написанную К. А. Лурье новую (тридцать первую) главу, содержащую изложение основ специальной теории относительности. В заново написанных параграфах получили освещение вопросы полета ракеты простейшей схемы, теории колебаний систем с произвольным конечным числом степеней свободы, применения общих теорем динамики систем материальных точек к сплошным средам (теоремы Эйлера, Бернулли, Борда), а также к выводу общих дифференциальных уравнений динамики сплошных сред и выражения мощности внутренних сил в сплошной среде. Последнее в случае сред с внутренним трением позволяет глубже судить о важном для механики понятии потерь (диссипации) механической энергии при движении среды.  [c.7]


Применение к модели методов вычислений, используемых в строительной механике стержней, позволяет приближенно решать задачи теории пластин, дисков и оболочек. После того как приблизительно с начала 50-х гг. стали появляться быстродействующие вычислительные машины, начали развиваться матричные методы в статике упругих систем для расчета сложных конструкций. Возникли различные вычислительные методы для анализа многократно статически неопределимых систем. Аргирис [В19] в особенности довел методы перемещений и сил в матричной форме до эффективных общих вычислительных методов расчета статики и динамики сложных систем (например, конструкций самолетов). Примерно к тому же времени относится обобщение этих методов благодаря идее расчленения сплошной среды на конечное множество частей с последующим применением к ним вычислительных матричных методов. В различных работах [41, 42] впервые появилось понятие конечного элемента и последовало применение метода сначала к плоским задачам теории упругости с использованием треугольных или прямоугольных конечных элементов >.  [c.133]

Все мы привыкли к тому, что основные разделы физики построены на принципах динамики. Все начинается с механики материальной точки и с законов Ньютона, которые вводят основные динамические понятия массу, скорость, импульс и силу. Теоретическая механика всего лишь оформляет элементарные законы механики в более пышные одежды дифференциальных уравнений и вариационных принципов. На базе простейших законов движения материальной точки строятся более сложные уравнения движения сплошных сред газов, жидкостей и упругих тел. Здесь впервые появляются непрерывные функции координат и времени, играющие роль полей, хотя собственно полями принято считать поля в вакууме, например электромагнитное поле. Уравнения для полей — это тоже уравнения динамики. Термодинамика только на первый взгляд кажется феноменологической наукой, а в действительности она может быть построена на базе статистической физики, представляющей собой лишь специфическую разновидность динамики. Тот факт, что физика строится на принципах динамики, проявляется и в основных физических единицах измерения (например, сантиметр, грамм, секунда), которые изначально вводятся в механике материальной точки, а затем переносятся в другие, более сложные разделы физики.  [c.15]

В классической динамике материальных точек или твердых тел принцип сохранения момента количества движения обычно формулируется в виде теоремы. Ее доказательство основано, однако, на 0пределе1п1ых предположениях относительно внутренних сил взаимодействия частиц или тел, образующих материальную систему. Аналогичный метод применим и в механике сплошных сред ). Здесь для того, чтобы обеспечить сохранение момента количества движения, нужно  [c.24]

Это провозглашение эры исключительного господства аналитического метода могло казаться тем более обоснованным, что в труде Лагранжа содержится и все, что к тому времени составляло механику сплошной среды. Подводя итоги, надо все же признать, что аналитическая механика Лагранжа — не вся механика его времени. Недостаточность для приложений динамики идеальной жидкости, ограничение идеальными связями, т. е. исключение сил трения, математические трудности — словом, все, отделявшее теоретические построения от технических применений, заставляло уже тогда искать новые физические схемы, приближенные методы, обращаться к эксперименту. Это относится прежде всего к механике сплошной среды (см. следующую главу). Но в механике Лагранжа не было и других важных компонентов. В ней отразились и слабые стороны механистического, недиалектического материализма XVIII в. Лагранж обходит вопросы, связанные с тем или другим толкованием таких общих понятий, как пространство и время. А заодно он совсем не касается вопроса о том, каковы те системы координат, которыми он пользуется он ничего не говорит об относительности движения. Он обрывает в этом пункте традиции классической механики. Исходя из уравнений и не вникая в анализ физических основ механики, Лагранж как бы провел некую линию уровня . Все, лежащее выше нее, можно было считать прочно установленным и рекомендовать к применению то, что находилось ниже нее, игнорировалось. Это была новая позиция — позиция разумного самоограничения, но это исключало из рассмотрения ряд основных вопросов механики (и естествознания в целом). Исключить их на том основании, что пока нет удовлетворительного ответа на них и что они слишком близки к метафизике , было полезно можно было сосредоточить усилия на более конкретных задачах, поддающихся решению но это принесло и вред, так как отвлекало от более глубокого исследования основных понятий механики и физики, создавая иллюзию благополучия, которого на самом деле не было.  [c.157]


На ФПК в ЛГУ читаются спецкурсы по наиболее перспективным направлениям современной механики, отрабатываются вопросы методики ее преподавания в вузах, в частности, с применением ЭВМ и ТСО. Кроме 0бщена)д1ных дисциплин (основы марксистско-ленинской философии, педагогика, психология, охрана окружающей среды, техника речи и лекторское мастерство, программированное обучение и др.), читаются спецкурсы методика преподавания теоретической механики, аналитическая механика, механика со случайными силами, теория устойчивости, теория автоуправления, история механики, теория линейных колебаний, теория нелинейных колебаний, теория упругих колебаний, механика сплошной среды, математические основы современной механики, вычислительные методы механики и программирование, динамика космического полета, колебаний электромеханических систем. Особое внимание в спецкурсах уделяется вопросам применения ЭВМ в вузовском учебном процессе, причем слушатели имеют возможность пользоваться ЭВМ в ВЦ ЛГУ, посещать лекции и занятия по алгоритмическим языкам и математическому обеспечению ЭВМ. Для слушателей читаются лекции по применению ТСО в учебном процессе и методам учебного телевиденйя.  [c.59]

В 1948 г. Л. Г. Лойцянский и А. И. Лурье включили в свой Курс теоретической механики главу Динамика точки и тела переменной массы . Тем же по существу методом, что и Космодемьянский, они выводят основные уравнения динамики системы и твердого тела переменной массы. Однако в качестве интересной иллюстрации применения теоремы количества движения к сплошным средам авторы курса возрождают также подход Л. Эйлера к вычислению реактивной силы водометного судна (и реактивного момента гидравлической турбины), примененный им в середине XVHI в. Изложение теоремы Эйлера в современной векторной форме привело авторов к формулировке главные векторы объемных и поверхностных сил и векторы количества движения масс жидкости, входящих и выходящих сквозь два каких-нибудь сечения трубы в единицу времени, направленные внутрь выделенного объема, образуют замкнутый многоугольник. Совершенно таким же методом, как в свое время Эйлер определял реактивную силу водомета, авторы получили для реактивной силы свободного снаряда выражение  [c.242]

Таким образом, в аналитической динамике сбалансированность моментов эквивалентна аредположению, что силы взаимодействия центральны пои условии, что система сил сбалансирована. Как должно быть ясио из рас-суждений, приведших к теореме Нолла, никакого аналогичного сведения сбалансированности моментов к сбалансированности сил в случае более общих и типичных вселенных механики ожидать нельзя. В механике сплошных сред центральные силы, а на самом деле и силы взаимодействия любых видов никакой особой роли не играют, так что общий подход аналитической механики в этом случае нетипичен и почти бесполезен.  [c.44]

Математическое описание гидромеханических процессов основано на известных из механики жидкости и газа общих уравнениях движения сплошной среды с использованием экспериментальных значений коэффициентов гидравлических сопротивлений, коэффициентов расходов и коэффициентов гидродинамических сил. Приложение общих уравнений и зависимостей гидромеханики к задачам динамики гидро- и пневмосистем имеет свои особенности, обусловленные принципом действия, конструкцией и режимами работы гидравлических и пневматических устройств. Характерными для гидро- и пневмосистем управления являются динамические процессы, при которых движение рабочих сред будет неустановив-шимся, т. е. в любой точке живого сечения потока давление, скорость и плотность среды зависят от времени.  [c.185]

Современные проблемы механики, ханику, газовую динамику, упругости присоединением (налипанием). При К числу этих проблем относятся уже теорию, пластичности теорию и др. полете совр. реактивных самолётов отмечавшиеся задачи теории колеба- Осн. допущение М. с. с. состоит в том, воздушно-реактивными двигателями ний (особенно нелинейных), динамики что в-во можно рассматривать как не- происходят одновременно как про-тв. тела, теории устойчивости движе- прерывную, сплошную среду, пре- Ц ссы присоединения, так и отделения ния, а также М. тел перем. массы и небрегая его молекулярным (атом- Масса таких самолётов увеличи-динамики косм, полётов. Всё боль- ным) строением, и одновременно счи- дается за счёт ч-ц воздуха, засасывавшее значение приобретают задачи, тать непрерывным распределение в двигатель, и уменьшается в ретребующие применения вероятност- среде всех её хар-к (плотности, на- зультате отбрасывания ч-ц продук-ных методов расчёта, т. е. задачи, в пряжений, скоростей ч-ц и др.). Эти " в горения топлива. Основное век-к-рых, напр., для действующих сил допущения позволяют применять в торное дифф. ур-ние движения точки известна лишь вероятность того, ка- М. с. с. хорошо разработанный для перем. массы для случая присоедине-кие значения они могут иметь. В М. непрерывных ф-ций аппарат высшей пя и отделения ч-ц, полученное в  [c.416]


Смотреть страницы где упоминается термин ДИНАМИКА СПЛОШНОЙ СРЕДЫ Силы в механике сплошной среды : [c.352]    [c.127]    [c.118]    [c.813]   
Смотреть главы в:

Механика сплошной среды Часть2 Общие законы кинематики и динамики  -> ДИНАМИКА СПЛОШНОЙ СРЕДЫ Силы в механике сплошной среды



ПОИСК



Механика сплошной

Механика сплошных сред

Сила в сплошной среде

Среда сплошная



© 2025 Mash-xxl.info Реклама на сайте