Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние времени и скорости деформирования

Влияние времени и скорости деформирования 51  [c.51]

В предыдущих главах изучались исключительно статические задачи теории упруго-пластических деформаций или, лучше сказать, задачи, в которых колебаниями и связанными с ними силами инерции можно пренебречь. Пренебрегалось также и влияние времени и скорости деформирования на зависимость о чём уже было сказано в главе I.  [c.345]

Рассмотрим подходы к постановке экспериментальных исследований в атермической области. Главной отличительной чертой этой области является отсутствие влияния времени и, следовательно, независимость механических характеристик от скорости циклического и статического нагружения и деформирования.  [c.210]


И данным, полученным при сочетании выдержек, равных времени деформирования на малой скорости с числом циклов предшествующего или последующего деформирования на большей скорости. Из рис. 23 видно, что эксперимент подтверждает схему, по которой влияние времени и числа циклов может быть разделено.  [c.200]

Вязкая жидкость. Простейшим примером тел, для которых влияние времени на напряженно-деформированное состояние существенно, является вязкая жидкость, расчетная модель которой установлена Ньютоном, почему ее часто называют ньютоновой вязкой жидкостью. Для такой жидкости сопротивление течению зависит от относительных скоростей движения ее частиц. Вследствие этого касательные напряжения в точках вязкой жидкости следует сопоставлять не с величиной относительных сдвигов, а со скоростью изменения этих сдвигов у, где точкой обозначается производная по времени 1. Ньютон предложил принимать зависимость между т и у линейной, так что  [c.397]

На временное сопротивление при разрыве ЧШГ оказывает влияние не только температура, но и скорость деформирования (табл. 3.3.71).  [c.558]

К разрушениям второго типа, которые могут происходить также при различных схемах нагружения, следует отнести разрушения, для которых критические параметры существенно зависят от времени нагружения в том или ином виде. Типичным примером является разрушение, получившее в литературе название разрушение при взаимодействии ползучести и усталости [240, 341] при циклическом нагружении в определенном температурном интервале долговечность при одной и той же амплитуде деформации зависит от скорости деформирования, значительно уменьшаясь при малых эффективных скоростях деформирования, в частности при циклировании с выдержками. На стадии развития усталостного повреждения также известны многочисленные экспериментальные данные о влиянии частоты нагружения в определенных условиях, особенно в коррозионной среде, на скорость роста усталостных трещин [199, 240, 310,  [c.150]

Влияние скорости деформации. При увеличении скорости нарастания нагрузки, и следовательно скорости роста напряжения и деформации, все материалы, находящиеся в пластическом состоянии, обнаруживают общую тенденцию к увеличению сопротивляемости деформированию. Чем выше скорость деформирования, тем выше предел текучести и временное сопротивление. Особенно сильно зависят от скорости нагружения механические свойства пластмасс и других органических материалов. У металлов влияние скорости нагружения заметно проявляется лишь при значительной разнице в скоростях.  [c.112]


Структура, формирующаяся в процессе горячей пластической деформации, является термодинамически неравновесной. Поэтому связь между напряжениями, деформациями и скоростями деформации неоднозначна. Величина напряжений в значительной мере определяется тем, как происходило развитие деформаций во времени. Иными словами, история процесса оказывает значительное влияние на сопротивление деформации и напряженно-деформированное состояние при обработке металлов давлением.  [c.481]

Из сказанного выше вытекает, что в рассмотренном диапазоне скоростей деформирования влияние скорости в прямой форме не проявляется, а изменение циклических свойств должно быть отнесено за счет различного времени деформирования при одинаковом числе циклов. Соблюдение условия подобия предполагает, кроме того, раздельное влияние времени деформирования, числа циклов и уровня исходного деформирования на величину необратимой деформации. Это раздельное влияние может быть проверено постановкой специального эксперимента, сочетающего циклическое деформирование с выдержками в течение определенного времени без нагрузки. Немаловажной является и возможность, установления закономерностей циклического деформирования с температурными выдержками, поскольку работа конструкций часто протекает именно таким образом.  [c.93]

В монографии представлены результаты исследования механического поведения конструкционных материалов под действием импульсных нагрузок ударного и взрывного характера. Рассмотрена связь процессов нагружения и деформирования материала при одноосном напряженном состоянии. Описаны оригинальные методики и средства квазистатических испытаний на растяжение со скоростями до 950 м/с. Приведены результаты испытаний ряда металлических материалов и реологическая модель их механического поведения учитывающая влияние на сопротивление скорости деформации. Исследовано упруго-пластическое деформирование и разрушение материала в плоских волнах нагрузки. Описаны новые методики и изложены результаты экспериментальных исследований зависимости характеристик ударной сжимаемости н сопротивления пластическому сдвигу за фронтом плоской волны от ее интенсивности, связи силовых и временных характеристик откольной прочности.  [c.2]

При заданном структурном состоянии сопротивление материала деформации связано с условиями мгновенного нагружения (набором постоянных п>0), если физические процессы микропластической деформации приобретают стабильную скорость, соответствующую действующему уровню нагрузки, за время, сравнимое с временем изучения интересующих нас явлений. Для металлов, в которых процесс деформации контролируется динамикой дислокаций, влиянием старших производных 8 " (п>1), характеризующих процесс нестабильного движения дислокаций, можно пренебречь при изучении процессов, длительность которых значительно превышает время установления скорости движения дислокаций A 5-10 ° . Приращение деформации за такое время определяет максимальное различие кривых деформирования в процессах с нулевым и конечным временем установления скорости дислокаций. Кривые совпадают с заданной погрешностью Де при скорости деформации  [c.24]

Боковая волна разгрузки нарушает одномерность поля деформаций, однако не оказывает существенного влияния на скорость движения наковальни после ее отделения от бойка. Центральная часть наковальни, связанная с образцом, приобретает скорость движения, близкую к скорости движения наковальни, в результате распространения поперечных волн. Конечное время выравнивания скорости по объему наковальни приводит при высоких скоростях к повышенному времени нарастания скорости на начальном участке деформирования образца и, следовательно, к заниженной скорости деформирования. Для уменьшения этого эффекта при высоких скоростях деформирования требуется уменьшение области наковальни, не воспринимающей удар бойка. Для этого использована схема ударного нагрул е-ния (см. рис. 38, б), в которой наковальня, связанная с головкой образца, воспринимает удар бойка через промежуточное кольцо, внутреннее отверстие в котором близко к диаметру головки образца. За время прохождения пути до соударения с наковальней скорость по объему промежуточного кольца успевает выровняться. Отскакиванием наковальни от промежуточного кольца в этом случае можно пренебречь деформация при высоких скоростях является упруго-пластической и коэффициент восстановления мал. Масса наковальни выбирается из условия  [c.103]


Экспериментальные данные о влиянии скорости деформации на сопротивление деформированию в волнах разгрузки, проявляющейся в связи силовых и временных параметров откольной прочности материала, позволяют расширить диапазон скоростей деформирования. Для анализа результатов необходимо принять определенную модель процесса разрушения с соответствующими критериями разрушения, позволяющую связать влияние скорости деформации на сопротивление деформации при одноосном напряженном состоянии в испытаниях на растяжение — сжатие (или двухосном напряженном состоянии в испытаниях на чистый сдвиг) с влиянием скорости нагружения в области растягивающих напряжений на откольную прочность при одноосной деформации в плоских волнах нагрузки.  [c.242]

Временные эффекты (релаксация и ползучесть) оказывают противоположное влияние на характер циклического деформирования. Под их воздействием разность размахов напряжений 65 в соседних полуциклах упругопластического деформирования при непрерывном увеличении от цикла к циклу параметра 5 е уменьшается, что отражает увеличение скорости накопления деформаций в результате ползучести (сплошные линии).  [c.237]

Специфическая особенность процессов высокоскоростного нагружения заключается в сложном характере нагружения и влиянии времени нагружения. При высокоскоростных испытаниях устранение эффектов продольной инерции в образце достигают только при испытании с постоянной скоростью деформирования — относительного движения торцов образца. При таком законе нагружения каждое сечение образца двигается с постоянной скоростью, линейно возрастающей от закрепленного конца образца к нагружаемому, до момента локализации деформации, например в шейке на рабочей части при растяжении. При скоростях деформации свыше 5Х X 10 с 1 обеспечение необходимой однородности деформирования образца чрезвычайно затруднено. Поэтому для изучения поведения материала используют анализ закономерностей неоднородного деформирования при распространении упругопластических волн в стержнях и плитах. Методы определения характеристик неоднородного высокоскоростного деформирования  [c.107]

Второе свойство. Для любых е и Г из открытого промежутка (0, Тал) зависимость а от р представляет собой непрерывную гладкую кривую с неубывающей ординатой. Эта кривая является непрерывной и монотонной функцией температуры. Ее пределом при Т о является отрезок прямой, параллельной оси абсцисс. С определенной долей условности кривую зависимости а от р можно разделить на два участка 0 — р — горячий и Р — Р — холодный . Участок р — р характеризуется малым в.лия-нием скорости деформирования (малым влиянием временной истории деформирования). Произвол при выборе положения Р устраняется, если задан определенный допуск в отношении малости влияния времени на холодном участке. При 2 0 горячая  [c.134]

Влияние скорости деформирования. Скорость деформирования материала при обработке давлением в значительной степени определяется скоростью перемещения деформирующего инструмента, хотя и не идентична ей. Правильнее было бы под скоростью деформации принимать величину относительного изменения размеров тела в единицу времени в направлении действующей силы, т. е.  [c.395]

Существенную роль в описании процесса длительного малоциклового нагружения играет функция / 2(г), отражающая влияние общего времени деформирования. Предполагается, что деформационные свойства не находятся в прямой зависимости от скорости деформирования в рассматриваемом диапазоне скоростей повторного статического нагружения, а основное значение имеет время деформирования. Принимается также, что функция 2(0 не зависит от формы цикла нагружения и может быть получена экспериментально как при циклическом нагружении с варьируемой частотой испытания, так и при нагружении с высокотемпературной выдержкой под нагрузкой и без нее.  [c.180]

Поскольку иногда детали машин и элементы конструкций работают за пределом текучести, необходимо исследовать зависимость между напряжениями и деформациями в пластической области, где соотношения линейной теории упругости уже неприменимы. Соотношения между деформациями и напряжениями в пластической области в общем случае нельзя считать не зависящими от времени. В любой точной теории пластического деформирования следовало бы учитывать влияние всего процесса изменения пластической деформации с момента начала пластического течения. Соотношения, учитывающие это, были бы очень сложными, они содержали бы в себе напряжения и скорость изменения деформации во времени. Уравнения были бы аналогичны уравнениям течения вязкой жидкости, а деформацию в каждый момент времени следовало бы определять, осуществляя пошаговое интегрирование по всему процессу изменения деформации. Такой подход привел бы к очень трудоемким расчетам даже при решении простейших задач о пластической деформации. Вследствие этого обычно делают некоторые упрощающие предположения, которые позволяют относительно просто исследовать процессы пластического деформирования и получать достаточно простые результаты, пока температура ниже температуры ползучести и в случае обычных скоростей деформации.  [c.118]

В первой части монографии даны сведения из механики сплошных сред, рассмотрены закономерности упругой и пластической деформации и разрушения металлов, влияние времени, скорости нагружения и деформирования, высоких давлений и температур на свойства металлов. Приведены данные об остаточных напряжениях, анизотропии механических свойств, дан анализ структуры изломов. Рассмотрены современные статистические и дислокационные представления о деформации и разрушении.  [c.4]


Соответствующий эксперимент был проведен на стали 1Х18Н9Т жри температуре 700° С, при которой временная зависимость достаточно выражена (см. рис. 2.3.4). Результаты эксперимента, выполненного по описанной схеме, приведены на рис. 2.3.7, 6. Сплошные линии соответствуют циклическому деформированию на большой скорости и данным, полученным при сочетании выдержек, равных времени деформирования на малой скорости с числом циклов предшествующего или последующего деформирования на большей скорости. Из рис. 2.3.7, б видно соответствие эксперимента схеме, согласно которой влияние времени и числа циклов может быть разделено.  [c.94]

До сих пор мы рассматривали напряженно-деформированное состояние тел с учетом только упругих и пластичесих свойств. Ре-альные материалы, кроме того, обладают вязкостью. Это свойство в большей или меньшей мере проявляется во влиянии на напряженное и деформированное состояния тела времени и скорости нагружения или скорости деформирования. При решении многих технических задач этим свойством можно пренебречь. Рднако в ряде случаев, например при работе детали в условиях высоких температур в широком диапазоне скоростей нагружения или при расчете прочности большинства материалов с аморфной структурой, влияние вязкости оказывается существенным. Математическое описание указанного явления необходимо в реологических расчетах.  [c.51]

В данной главе рассмотрено разрушение материала, при котором критические параметры Nf или ef) существенно зависят от времени нагружения или от скорости деформирования. При испытании в инертных средах чувствительность материала к скорости деформирования в основном связана с межзеренным характером накопления повреждений и разрушения при вну-тризеренном разрушении такой чувствительности не наблюдается. Скоростная зависимость Nf H) или ef( ) в первую очередь обусловлена накоплением повреждений по границам зерен не только за счет пластического деформирования, но и за счет диффузии вакансий в теле зерна активность диффузионных процессов значительно ниже, чем по границам, и они практически не оказывают влияния на внутризеренное повреждение. Переход от межзеренного разрушения к внутризеренному при увеличении I связан с нивелированием диффузионных процессов по границам зерен и отсутствием проскальзывания зерен.  [c.186]

Помимо рассмотренных основных видов механичеоиих испытаний, в исследовательской практике применяются и другие специальные виды механических иапытаний, к числу которых относятся испытан1ия с целью выяснения влияния на механическ1ие свойства материалов факторов времени, температуры и термической обработки иапытания при высоких скоростях деформирования и т. д.  [c.6]

Рассмотрим сначала свойства диаграмм циклического деформирования в связи с уровнем температур и частотой (временем) нагружения. В Институте машиноведения исследования проводились на двух сталях с контрастными свойствами циклически упрочняющейся аустенитной нержавеющей стали 1Х18Н9Т и циклически разупрочняющейся стали ТС. Выбор сталей обусловливался потребностями аппаратостроения, где эти материалы достаточно широко используются при повышенных температурах. Диапазон температур для стали 1Х18Н9Т был принят до 700 С, для теплоустойчивой стали — до 550 С эти температуры являются максимально возможными в эксплуатации для выбранных материалов. Исследование влияния скорости деформирования проводилось при сдвиге в диапазоне изменения скоростешна два порядка, от приблизительно 0,18 до 0,0018 мин , что соответствует в среднем времени цикла от 0,16—0,18 до 16—18 мин.  [c.85]

Для теплоустойчивой стали характерно специфическое влияние скорости деформирования и времени выдержки, причем циклические свойства этой стали в определенном смысле контрастны со свойствами стали 1Х18Н9Т. Из рис. 2.3.4 видно, что при циклическом деформировании с различными скоростями, начиная с некоторой критической скорости, наблюдается своеобразное насыщение и дальнейшего изменения свойств с увеличением периода деформирования не происходит.  [c.100]

На основании общих физических представлений о поведении материала под нагрузкой его сопротивление деформированию определяется мгновенными условиями нагружения (температурой, скоростью деформации и другими ее производными в момент регистрации), а также структурой материала, сформированной в процессе предшествующего деформирования, который в п-мерном пространстве характеризуется траекторией точки, проекции радиуса-вектора которой — составляющие тензора напряжений (или деформаций) и время (начальная температура является параметром, характеризующим исходное состояние материала, и изменяется в соответствии с адиабатическим характером процесса деформирования). Специфической особенностью процессов импульсного нагружения является сложный характер нагружения (составляющие тензора напряжений меняются непропорционально единому параметру) и влияние времени. Невозможность экспериментального исследования материала при различных процессах нагружения (траекториях точки указанного выше л-мерного пространства) вынуждает исследователей использовать упрощенные модели механического поведения материала. Это обусловило развитие исследований по разработке теорий пластичности, учитывающих температурновременные эффекты [49, 213, 218] наряду с изучением физических процессов скоростной пластической деформации [5, 82, 175, 309]. Так, для первоначально изотропного материала исходя из гипотезы изотропного упрочнения связь тензоров напряжений и деформаций полностью определяется связью их инвариантов соответственно Ei, Ег, Ез и Ii, h, h- С учетом упругого характера связи средних напряжений и объемной деформации для металлических материалов (а следовательно, независимость от истории нагружения первых инвариантов тензоров напряжений и деформаций Ei, А) процесс нагружения определяется связью четырех оставшихся инвариантов и величины среднего давления. В классической теории пластичности  [c.11]

Основное условие получения достоверных результатов в ква-зистатических испытаниях — поддержание с заданной точностью однородности напряженного и деформационного состояния материала в объеме рабочей части образца. Это позволяет принимать регистрируемые зависимости между напряжением и деформацией за характеристики поведения локального объема материала. Таким методом определены характеристики сопротивления материалов деформированию в большинстве проведенных до настоящего времени исследований, в основном при испытаниях на растяжение или сжатие со скоростями до 10 м/с [69, 167, 208, 210, 305, 406, 409]. Область более высоких скоростей деформирования, особенно при испытаниях на растяжение, обеспечивающих получение наиболее полной информации о поведении материала под нагрузкой, практически не исследована. Такое ограничение исследований обусловлено тем, что с ростом скорости деформации возрастает влияние волновых процессов и радиальной инерции в образце и цепи нагружения, ведущих к нарушению однородности деформации и одноосности напряженного состояния в объеме рабочей части образца и затрудняющих приведение усилий и деформаций в материале. Уменьшение влияния этих эффектов требует разработки специальных методик для испытаний с высокими скоростями деформации.  [c.13]


Таким образом, снижение вязкости с ростом величины и скорости деформации оказывает существенное влияние на величину сопротивления и форму кривой деформирования материала о(е), зависящее от реализуемого при испытании закона нагружения. Снижение вязкости с ростом скорости деформации не нарушает монотонного характера кривой а(е) при испытании с постоянной скоростью деформации, в то время как снижение вязкости в процессе пластического деформирования приводит к появлению экстремумов. При испытаниях с постоянной скоростью нагружения кривая деформирования не имеет особенностей (максимумов и минимумов напряжения), однако сохранение скорости в процессе испытания материала, вязкость которого монотонно снижается с ростом деформации, в принципе неосуществимо. В испытаниях с постоянной величиной нагрузки о = onst кривая е(1) зависит от характера изменения вязкости ее постоянная величина для упрочняющегося материала ведет к непрерывному снижению скорости деформации с тегчением времени (с ростом величины пластической деформации), а зависимость коэффициента вязкости от величины деформации приводит к появлению минимума скорости деформации.  [c.59]

Таким образом, диаграмму длительного лшюциклового деформирования конструкционного материала строят на основе диаграмм малоциклового нагружения (при скоростях, частотах и временах деформирования, исключающих проявление временных эффектов) — изоциклических кривых, а также изохронных кривых, отражающих влияние времени (релаксации и ползучести) в условиях высокотемпературного деформирования.  [c.21]

Выдержка образца под постоянной нагрузкой приводит к увеличению деформаций и уменьшению значений напряжений в наиболее опасных точках, т. е. в зоне концентрации происходят процессы ползучести и релаксации. При увеличении времени выдержки скорость изменения напряжений существенно уменьшается. Однако и при максимальном времени вьщержки процесс релаксации явно продолжается, в то время как изменение деформаций >1стро прекращается (см. табл. 2.8). Влияние времени вьщержки учитывает показатель упрочнения т, определяемый при степенной аппроксимации в нелинейной части изохронной кривой деформирования по формулам для нулевого полуцикла нагружения ш(0) = g ala )l g(ele )-, для последующих по луциклов т(А ) = lg(5/Sj.)/lg(e/e.f), где и - предел текучести материала и соответствующая ему деформация н -циклический предел текучести материала и соответствующая ему деформация.  [c.131]

Микромеханизмы возникновения мгновенных пластических деформадий и развивающихся во времени деформаций ползучести тесно связаны между собой, поэтому необходимо учитывать взаимодействие процессов ползучести и пластического деформирования, которое усиливается с ростом температэфы. Кроме того, механические свойства конструкционных материалов изменяются с температурой не только как мгновенная реакция на ее текущее значегше, но и о некоторым запаздыванием вследствие постепенной перестройки микроструктуры материала со скоростью, которая также пропорциональна множителю вида (4.1.1). Все это затрудняет при повышенных температурах раздельное определение характеристик пластичности и ползучести материала в экспериментах и заставляет учитывать взаимное влияние процессов ползучести и пластического деформирования на напряженно-деформированное состояние и работоспособность теплонапряжегшых конструкций [28].  [c.176]

Фон Карман и Дюве (von Karman and Duwez [1946, II) наблюдали в экспериментах явление, состоявшее в том, что пластическое деформирование железа не давало остаточных деформаций до тех пор, пока скорости не превышали существенно значение, вычисленное по квазистатическому пределу упругости явление это позволило перебросить мостик к предыдущим экспериментам и дало толчок к изучению времени запаздывания , которое и последовало за этим. Часто цитируемое утверждение фон Кармана, что расхождения между экспериментом и предсказаниями по распределению пластической деформации, выполненными на основе квазистатической функции отклика (рис. 4.132), можно объяснить малостью влияния скорости деформирования, оказалось нелогичным ввиду того, что квазистатическая функция отклика, используемая в качестве определяющей функции напряжение — деформация, выбиралась произвольно.  [c.226]


Смотреть страницы где упоминается термин Влияние времени и скорости деформирования : [c.120]    [c.81]    [c.22]    [c.73]    [c.91]    [c.40]    [c.259]    [c.259]    [c.395]    [c.57]    [c.165]   
Смотреть главы в:

Деформирование и прочность материалов при сложном напряженном состоянии  -> Влияние времени и скорости деформирования



ПОИСК



Влияние времени

Влияние скорости

Скорость деформирования



© 2025 Mash-xxl.info Реклама на сайте