Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь Дефектоскопия ультразвуковая

Сталь. Методы ультразвукового контроля. Общие требования Контроль неразрушающий. Швы сварные. Методы ультразвуковые Аппараты рентгеновские аналитические. Общие технические условия Источники излучения с изотопом цезий-137 для гамма-дефектоскопов. Типы, основные параметры и размеры  [c.473]


Сталь. Методы ультразвуковой дефектоскопии. Общие положения Швы сварных соединений. Методы ультразвуковой дефектоскопии Источник излучения с изотопом кобальт-60 для гамма-дефектоскопии. Типы. Основные параметры и размеры  [c.312]

Для выявления различных дефектов термообработки широко применяют приборы магнитного действия (магнитные дефектоскопы), а для выявления дефектов в стали — также ультразвуковой метод.  [c.176]

Внешний осмотр магнитная (для сталей) и ультразвуковая дефектоскопия  [c.631]

Трещины (при сварке закаливающихся сталей) Во вмятине видны трещины, расходящиеся в виде паутины от средней точки или в виде серпа по окружности точки Внешний осмотр магнитная (для сталей) и ультразвуковая дефектоскопия  [c.631]

Структурный анализ металлов можно проводить ультразвуковым широкодиапазонным дефектоскопом У САД-61. Для автоматического измерения величины зерна в материале особо тонкостенных труб из коррозионностойких сталей создан ультразвуковой прибор Кристалл-1 , Размер зерен определяется по максимальным амплитудам импульсов волн. На каждое отклонение величины зерна от нормы прибор подает световые сигналы.  [c.105]

При изготовлении сварных сосудов и аппаратов в соответствии с требованиями ОСТ 26-291 цветная дефектоскопия является регламентируемым методом контроля качества сварных соединений. Цветной или магнитопорошковой дефектоскопии следует подвергать сварные швы, не доступные для осуществления контроля радиографическим или ультразвуковым методом (в частности, швов приварки штуцеров и труб внутренним диаметром менее 100 мм), а также сварные швы сталей, склонных к образованию трещин при сварке.  [c.219]

Вследствие различного акустического сопротивления баббита и стали часть энергии ультразвуковых колебаний должна отразиться от границы раздела двух металлов (на экране дефектоскопа будет наблюдаться эхо-сигнал с незначительной амплитудой), но значительная часть ее пройдет в стальную пластину Отраженный от противоположной поверхности образца ультразвук должен воздействовать на приемную пластину. При некачественном сплавлении практически все ультразвуковые колебания отражаются от границы раздела и на экране дефектоскопа должен наблюдаться один эхо-сигнал с большой амплитудой. Таким образом, по наличию эхо-сигнала от границы раздела баббит-сталь можно судить о качестве сплавления.  [c.261]


В результате исследований и разработок низкочастотных ультразвуковых преобразователей и аппаратуры стала возможна реализация низкочастотного эхо-импульсного метода [35 ] при контроле физико-механических характеристик, дефектоскопии и толщинометрии изделий из полимерных композиционных материалов, вследствие получения упругих импульсов малой длительности и существенного повышения направленности в режиме излучения и приема.  [c.87]

Наиболее широкое применение в промышленности получили неразрушающие испытания методами радиографии (просвечивание рентгеновскими, гамма-лучами), ультразвуковой и магнитопорошковой дефектоскопии, контроль по магнитным и электромагнитным характеристикам, электроиндуктивный контроль с помощью вихревых токов и дефектоскопия проникающими жидкостями. В настоящее время неразрушающие испытания стали предметом специальной технической дисциплины — неразрушающей дефектоскопии. Для исследования космического пространства необходимо решать сложные задачи в области контроля материалов, конструкций и обеспечения их качества и надежности. В связи с этим значительно усовершенствуются ранее известные методы, применяются комплексные процессы неразрушающего контроля, включающие несколько разных методов для решения одной задачи, вместе с тем появились и принципиально новые методы неразрушающего контроля. Необходимость в новых методах была обусловлена внедрением новых материалов и производственных процессов и требованием по-  [c.256]

При выборе методов контроля в зависимости от требований технических условий исходят из норм оценки качества сварных соединений, установленных ОСТ 26-291—79. Чувствительность и разрешающая способность выбранного метода должны обеспечивать надежное.выявление недопустимых дефектов. Объем контроля определяется в соответствии с Правилами устройства и безопасной эксплуатации сосудов, работающих под давлением, и ОСТ 26-291—79, а также с учетом требований отраслевых стандартов и инструкцией по контролю. Установленные отраслевым стандартом ОСТ 26-2079—80 методы контроля качества стыковых сварных соединений в зависимости от группы сосудов и аппаратов приведены в табл. 5.9, угловых и тавровых соединений—в табл. 5.10. Сварные соединения ответственных изделий из высоколегированной коррозионностойкой стали толщиной от 4 до 30 мм, двухслойной с плакирующим слоем из коррозионностойкой стали толщиной от 10 до 60 мм и углеродистой стали толщиной от 4 до 100 мм для выявления внутренних дефектов рекомендуется контролировать ультразвуковой дефектоскопией в сочетании с одним из радиационных методов.  [c.576]

Для сварных соединений сосудов и аппаратов всех групп с полным проплавлением шва, недоступных для проведения радиографического контроля, но конструктивные особенности которых позволяют проводить ультразвуковую дефектоскопию корневой части шва хотя бы с одной стороны шва, гидравлический метод с люминесцентным индикаторным покрытием может быть заменен ультразвуковым контролем корневой части шва. Ультразвуковой контроль в этом случае проводится в соответствии с ОСТ 26-2044—83 или отраслевой инструкцией РДИ 26-128—80 для соединений сталей аустенитного и аустенитно-ферритного классов.  [c.582]

Для металлографического исследования угловых и тавровых сварных соединений, выполненных электродуговой сваркой на элементах котлов, пароперегревателей, экономайзеров, трубопроводов пара и горячей воды из стали перлитного класса, а также аустенитного или мартенсито-фер-ритного классов, подвергаемых 100 %-ному контролю ультразвуковой дефектоскопией или просвечиванием, и сварных соединений, выполненных газовой сваркой (независимо от класса свариваемой стали) и подвергаемых такому же контролю, должны быть сварены соответствующие контрольные сварные соединения в количестве  [c.596]


II хомутов подвергают 100%-ному контролю на трещины ультразвуковым методом или с помощью магнитной дефектоскопии. При резьбе диаметром меньше М36 заготовки всех размеров из углеродистых и легированных сталей подвергают контролю на твердость и проверяют механические свойства в количестве 2% от садки. Заготовки из легированных сталей для шпилек и хомутов с резьбой М36 и выше подвергают 100%-ному контролю на твердость.  [c.153]

Металлографическое исследование можно не проводить для сварных соединений сталей перлитного класса, когда они выполнены при помощи электродуговой или электрошлаковой сварки и прошли 100%-ную ультразвуковую дефектоскопию или просвечивание. От него можно также отказаться, если сварка производилась на контактных стыкосварочных машинах с приборами для автоматического контроля параметров процесса сварки и проверкой качества наладки машины.  [c.223]

Импульсный ультразвуковой эхо-дефектоскоп типа УДМ-1М предназначен для обнаружения и определения координат дефектов, являющихся нарушениями сплошности (раковины, расслоения, пористость, треш,ины и т. д.), которые расположены на глубине от 1 до 2500 мм под поверхностью в крупных металлических заготовках, полуфабрикатах и изделиях для обнаружения различных дефектов в сварных соединениях для контроля макроструктуры стали, а также для измерения толщины изделия при одностороннем доступе к нему. Прибор позволяет определять дефекты в неметаллических изделиях (оргстекле, фарфоре, некоторых видах пластмасс), а также определять скорость распространения ультразвуковых колебаний в различных материалах методом сравнения.  [c.250]

Серьезным производственным дефектом являются трещины, образовавшиеся при сварке. Их проявление происходит в интервалах температур 1100-1300 и 100-300 С. Первые назьшаются "горячими , вторые - холодными . Швы сталей, склонных к закалке, более подвержены трещинообразованию, так как при сварке происходит закалка части металла с понижением его пластических характеристик в зоне термического влияния. Особая опасность трещин объясняется несколькими обстоятельствами. Во-первых, трещина уменьшает сечение сварного стыка, ослабляя прочность. Во-вторых, она служит концентратором напряжений. В-третьих, не все трещины выходят на поверхность сварного соединения и в таких случаях их невозможно выявить визуально. В-четвертых, нельзя определить скорость их развития при работе котла. Производственные трещины располагаются в основном металле, в зоне термического влияния и в сварных швах свариваемых деталей. Трещины, выходящие на поверхность шва, выявляются визуально или с помощью диагностических приборов. Внутренние трещины, не выходящие на поверхность, в основном находятся с помощью ультразвуковых дефектоскопов или иными методами.  [c.194]

В турбостроении широко применяют дефектоскопы УДМ-1М и УЗД-7Н, работающие на принципе импульсных ультразвуковых колебаний. Дефектоскопы предназначены для выявления в деталях таких дефектов, как трещины, пустоты, рыхлости, шлаковые включения, зоны ликвации, флокены и т. д. Этими дефектоскопами можно обнаруживать внутренние дефекты в поковках, прокате и сварных швах. Глубина залегания дефекта и толщина изделия определяются глубиномером. Максимальная глубина прозвучивания для стали при пользовании прямым искателем доходит до 2,5 м, призматическим искателем — до 1,2 м, а минимальная глубина прозвучивания при применении специальных призматических искателей равна 1—2 мм. При замере толщины металла свыше 100 мм погрешность составляет не более 2,5%. Дефектоскоп очень чувствителен. На глубине 1 м дефектоскоп обнаруживает дефект площадью 3—4 мм , а на глубине 300 мм — до 1—2 мм.  [c.447]

При серийном изготовлении однотипных изделий из листовой стали при 100%-ном контроле стыковых сварных соединений ультразвуковой дефектоскопией или просвечиванием допускается сварка одной контрольной пластины по каждому виду сварки на партию изделий. При этом в одну партию может быть объединено не более 15 изделий одного вида из листовой стали одной марки, имеющих одинаковую конструкцию стыков и форму разделки кромок, выполняемых по единому технологическому процессу и подлежащих термообработке по одному режиму, если цикл изготовления всех изделий по сборочно-сварочным работам, термообработке и контрольным операциям не превышает 3 мес.  [c.32]

Вместо просвечивания сварных стыков швов трубопроводов толщиной стенки 15 мм и более, изготовленных из углеродистой и низколегированных сталей перлитного класса, допускается проведение ультразвуковой дефектоскопии в соответствии с инструкцией Министерства строительства электростанций по ультразвуковому контролю качества сварных стыков трубопроводов электростанций.  [c.88]

Стоимость изготовления тонкостенных труб из циркониевых сплавов и нержавеющих сталей, применяемых для оболочек твэ-лов, характеризует весьма высокие технические требования к качеству металла (по химическому составу, содержанию примесей и включений), к допускам на геометрические размеры труб. Значительное удорожание оболочечных труб обусловлено большим объемом необходимого контроля (включая ультразвуковую дефектоскопию) и очень высокими требованиями к качеству поверхности (отсутствие рисок, царапин и других технологических дефектов).  [c.327]

Вторым фактором, побуждающим к улучшению структуры обжатой заготовки и доводки ее поверхности, — дальнейшее повышение результативности ультразвуковой дефектоскопии. Ее необходимость возникла в связи с тем, что стали проектировать свойства с учетом характеристик механики разрушения и приняли, что допускаемые напряжения зависят от размеров сам,ого крупного дефекта, не поддающегося обнаружению. В настоящее время операция и последствия предварительного обжатия слитков привлекают беспрецедентное внимание несмотря на это литература по обжатию слитков суперсплавов весьма ограниченна [3, 4].  [c.199]


TOB любого типа. Как показывает практика, ультразвуковой дефектоскопией не удается надежно отличить при точечном, термодиффузионном и некоторых других методах сварки участки, действительно сваренные, от тех, где произошло только слипание металла двух деталей. При ультразвуковом контроле помехи могут вызываться определенным строением структуры металла, например у аустенитных сталей.  [c.551]

Ультразвуковая дефектоскопия позволяет осуществлять контроль почти всех материалов, за исключением аустенитных (нержавеющих) сталей.  [c.376]

Ультразвуковая дефектоскопия как самостоятельная область науки зародилась в нашей стране. В 1928 г. чл.-кор. АН СССР С. Я. Соколов сформулировал основные принципы ультразвуковой дефектоскопии, а в середине 50-х годов этот прогрессивный метод стали применять для окончательной оценки качества продукции. К настоящему времени в передовых капиталистических странах и в ряде отраслей нашей страны (энергетическом машиностроении, судостроении, химическом машиностроении, на железнодорожном транспорте) ультразвуковой контроль составляет 70. .. 80 % среди других методов неразрушагощего контроля благодаря высокой чувствительности и достоверности обнаружения наиболее опасных дефектов типа трещин и непроваров, высокой производительности и оперативности, отсутствию вредного воздействия на организм человека и окружающую среду, возможности проведения контроля непосредственно на рабочих местах без изменения технологического процесса, низкой стоимости.  [c.3]

Более высокие требования к определению неоднородностей в металле (необходимость повышения разрешающей способности) привели автора изобретения к созданию в 1935 г. дефектоскопа нового типа — рефлектоскопа, основанного на принципе ультразвуковой локации [47, 48]. В последующие годы в связи с возможностью получать ультразвуковые импульсы продолжительностью в доли микросекунды разрешающая способность ультразвуковых рефлектоскопов повысилась настолько, что стало возмояшым  [c.351]

ГТросвечивание проникающими излучениями производи+ся в целях обнаружения внутренних дефектов шва трещин, раковин, рыхлости, непроваров, шлаковых включений и т. п. Сварные соединения контролируются в соответствии с ГОСТ 7512—69 и другими нормативными материалами. Обязательному просвечиванию подлежат все сварные соединения из сталей различных классов. Должны также быть просвечены все места пересечений и сопряжений сварных соединений вне зависимости от их категории и класса стали соединяемых элементов. Проведение ультразвуковой дефектоскопии не исключает необходимости просвечивания проникаюш,ими излучениями, при этом просвечивание участков, подлежаш,их этому виду контроля, не засчитывается в регламентированные объемы контроля. Объем просвечивания устанавливается Правилами [9] и может быть уменьшен по согласованию с проектной организацией, материа-ловедческой организацией, ответственной за выбор материалов для данной конструкции, с местными органами Госгортехнадзора в случае серийного изготовления предприятием однотипных изделий при неизменном технологическом процессе, специализации сварщиков на отдельных видах работ и высоком качестве сварных соединений, подтвержденном результатами контроля за период не менее одного года.  [c.215]

Для трубных сталей в рассматриваемом диапазоне температур (выше Ti) существенно различаются значения критического раскрытия вершины трещины, соответствующие инициированию вязкого разрушения бс и переходу его в нестабильное состояние бс. При лабораторных испытаниях характеристика бе соответствует условиям достижения максимальной нагрузки и последующего полного разрушения образца. Авторы работ [7, 8] отмечают, что в вязком состоянии величина б,- зависит от типа образца, отношения его геометрических размеров и схемы нагружения. Сопротивление материалов возникновению вязкого разрушения б практически не чувствительно [8, 9] к указанным выше факторам и определяется на диаграмме нагрузка — перемещение берегов дефекта моментом первого стра-гивания трещины. В случае незначительного различия между бе и б он может быть зафиксирован на диаграмме скачком перемещения, наблюдающимся при инициировании трещины. В последнее время разрабатываются инструментальные методы установления момента возникновения вязкого разрушения, основанные на измерении электропотенциала, обработке сигналов акустической эмиссии и ультразвуковой дефектоскопии [10]. В настоящей работе величина бс определялась по результатам испытаний нескольких образцов, предварительно нагружаемых до различных уровней раскрытия вершины трещины. После разгрузки образцы охлаждались до температуры жидкого азота и окончательно разрушались. На поверхности излома измерялась величина приращения длины трещины  [c.282]

Здесь принято, что при проведении ультразвуковой дефектоскопии (УЗД) структура стали условно считается мелкозернистой, если разность амплитуд при прозвучива-нии металла шва и основного металла наклонными искателями, генерирующими поперечные ультразвуковые колебания, не превыщает 15 дБ.  [c.575]

В случае серийного изготовления однотипных изделий из листовых материалов при 100%-ном контроле стыковых сварных соединений ультразвуковой дефектоскопией или просвечиванием допускается сварка одной контрольной пластины для каждого вида сварки на партию изделий. При этом в одну партию может быть объединено не более пят-нацати изделий котлов или сосудов одного вида из листовой стали одной марки, имеющих одинаковые конструкцию стыков и формы разделки кромок, выполняемых по единому технологическому процессу и подлежащих термической обработке по одному режиму, если цикл изготовления не превышает трех месяцев. Размеры свариваемых контрольных пластин должны позволять вырезать из них образцы для механических испытаний и металлографических исследований всех видов, а также для возможных повторных механических испытаний и металлографического исследования.  [c.592]

Как на наружной, так и на внутренней поверхности труб не должно быть плен, трещин, закатов, глубоких рисок и грубой рябизны. Трубы должны подвергаться дефектоскопии неразрушающими методами. Обычно используют ультразвуковой метод контроля. С наружной и внутренней поверхностей холоднокатаных, холоднотянутых и теплокатаных труб всех марок и горячекатаных труб из сталей 20, 15ГС, 1Х12В2МФ и Х18Н12Т должна быть полностью удалена окалина.  [c.141]

На рис. 32 приведен пример контроля качества металла крупного валка холодной прокатки при помощи ультразвукового дефектоскопа. Для ультразвукового контроля сварных швов углеродистых и легированных сталей разработана и применяется методика, позволяюш ая производить оценку качества при толш,ине свариваемых деталей до 800 мм. Об этом подробней сказано в гл. X.  [c.59]

В турбинах мощностью 150 000 кВт Харьковского турбинного завода ротор низкого давления выполнен сварным из стали 34ХМ1А. Для улучшения свариваемости содержание молибдена в этой стали было повышено до 0,4—0,6%. Крупные поковки из этой стали хорошо освоены и имеют стабильные механические свойства. Термическая обработка сварного ротора заключается в отпуске при температуре, не превышающей температуру отпуска поковок отдельных дисков. Сварка производится с предварительным и сопутствующим подогревом приблизительно до = 300° С. Принятый термический режим сварки гарантирует отсутствие резко выраженной подкалки в околошовной зоне и металле шва. Все сварные швы контролируют ультразвуковым дефектоскопом. В сварных роторах отклонение после окончания всей обработки не превышает по бочке 0,04 мм, а по шейкам 0,02 мм, т. е. лежит в допустимых пределах.  [c.435]


Для паропроводов, паросборников, коллекторов, фасонных литых деталей и корпусов арматуры, выполненных из сталей, легированных молибденом, и работающих при температуре 475 С и выше, а также выполненных из углеродистой стали и работающих при температуре 440 °С и выше, инструкцией [27] предусмотрено наблюдение за графитизацией по вырезанным образцам путем металлографического исследования. Особое внимание при этом обращается на зопы термического влияния сварных соединений трубопроводов и участки, подвергавшиеся холодной деформации или местным нагревам без последующей полной термической обработки. При обнаружении гра-фитизации хотя бы на одном из сварных соединений все остальные соединения подвергаются ультразвуковой дефектоскопии.  [c.344]

Применение труб с продольным сварным швом из стали марок, указанных R табл, 2 (приложение I), разрешается при поставке труб по специальным техническим условиям, согласованным с Госгортехнадзором, и с обязательным контролем качества сварного шва по всей его длине ультразвуковой дефектоскопией или иным эффективным способом контроля. Остальные требования к видам и нормам обязате.чь-ных испытаний качества и свойств сварных труб должны быть не ниже установленных для бесрловны.х труб из стали той же марки.  [c.20]

Металлографические исследования не являются обязательными для сварных соединений, выполненных электродуговой сваркой, па трубопроводах и трубах поверхностей нагрева котлов из стали перлитного класса при условии 100%-ного контроля этих соединений ультразвуковой дефектоскопией или просвечиванием.  [c.123]

Обобщая изложенное, можно сделать вывод, что компьютерная ультразвуковая дефектоскопия и томография стала реальным направлением дальнейшего развития акустических методов неразрушающего контроля как средства обеспечения высокого качества продукции машиностроения. Современные средства измерений в научных исследованиях на основе персональных компьютеров позволяют создавать очень эффективные автоматизированные установки для организации неразрушаюшего контроля в производственных условиях.  [c.55]

В случае серийного изготовления одиотипиых изделий из листовой стали при 100 %-ном контроле стыковых соединений ультразвуковой дефектоскопией или просвечиванием допускается сварка одной контрольной пластины по каждому виду сварки на партию изделий. При ручной сварке изделий из листовой стали--несколькими сварщиками, выполняющими отдельные швы, каждым сварщиком должна быть сварена одна контрольная пласти-  [c.159]


Смотреть страницы где упоминается термин Сталь Дефектоскопия ультразвуковая : [c.102]    [c.293]    [c.149]    [c.31]    [c.555]    [c.151]    [c.55]    [c.453]    [c.324]    [c.220]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.439 ]



ПОИСК



Дефектоскопия

Дефектоскопия ультразвуковая

Дефектоскопы

Луч ультразвуковой

Ультразвуковая дефектоскопи

Ультразвуковые дефектоскопы



© 2025 Mash-xxl.info Реклама на сайте