Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Системы координат

В гл. 1, являющейся по существу введением, устанавливается ряд основных термодинамических понятий и определений. Здесь говорится о термодинамической системе, координатах состояния, контрольной поверхности, воздействии на систему источников, потенциалах, состоянии равновесия системы, степенях свободы, квазистатических процессах и т. п.  [c.353]

Основной закон позволяет вычислить F через понятие массы материальной точки т и ее движение в инерциальной системе координат (а). Однако этот закон нельзя рассматривать как определение силы F, которая, являясь физической величиной, не зависит от выбора той или иной системы координат и является мерой изменения движения материального обьекта только в узком смысле. Как уже говорилось во введении, сила и масса представляют собой понятия первичные.  [c.49]


В предыдущих параграфах мы рассмотрели основные действия векторной алгебры, производя операции непосредственно над векторами как определенными геометрическими величинами. Этот способ рассуждений можно отнести к области прямого геометрического исчисления. Однако, как будет видно из дальнейшего, более э4>фективными оказываются способы, основанные на введении некоторых координатных систем. Надо еще раз напомнить, что найденные нами соотношения инвариантны, т. е. не зависят от выбора координатной системы и, следовательно, не изменяются при переходе от одной системы координат к другой. Это утверждение лишь в известной степени нарушается, как увидим далее, при рассмотрении векторного произведения. Следует подчеркнуть, что анализ основных понятий векторной алгебры приводит к заключению, что правило векторного сложения надо рассматривать как отображение одного из основных элементарных свойств векторов.  [c.37]

Прежде всего рассматривается задача о равновесии системы (статика системы), решение которой дается на основе принципа возможных перемещений. Вводится понятие обобщенных сил и формулируются аналитические условия равновесия. Здесь же можно кратко рассмотреть вопрос об устойчивости равновесия. Далее, как обычно, рассматривается принцип Даламбера и выводятся уравнения Лагранжа 2-го рода. Тем самым указывается метод решения основных задач динамики несвободной системы. Здесь же рассматриваются некоторые другие вопросы. Две системы активных сил, приложенных к определенной системе точек, называются эквивалентными, если их обобщенные силы совпадают при каком-нибудь выборе обобщенных координат (или если они выполняют одинаковую работу на любом возможном перемещении). Это определение вытекает из того факта, что активные силы входят в уравнения движения только через обобщенные силы, вследствие чего замена системы сил ей эквивалентной не сказывается на движении. Следует иметь в виду, что две эквивалентные в указанном смысле системы сил могут вызывать, конечно, различные реакции связей. Но в ряде задач эти реакции не представляют интереса и это различие можно игнорировать. Если это не так, то с помощью принципа освобождаемости реакции связей следует перевести в разряд активных сил.  [c.75]

Выше для наглядности при определении компонент тензора напряжений была применена декартова прямоугольная система координат. Как видно из рас-суждений, это не является ограничением для введения понятия тензора напряжений. Если пользоваться произвольной криволинейной пространственной системой координат (см., например, [7]) с базисными векторами основного базиса и взаимного а (к = 1, 2, 3), так что ком-  [c.241]


Основные идеи этого направления в теории жидкости заложены в строгих понятиях частичных функций распределения. Функция распределения в фазовом пространстве опре-ляет вероятность нахождения всех координат и импульсов системы около определенных значений. Она является многомерной функцией распределения. В соответствии с правилами теории вероятности нз многомерной функции распределения можно получить функции распределения любого порядка  [c.81]

Основные понятия. Топология БИС — это совокупность контуров на плоскости, соответствующих определенным технологическим слоям БИС, причем каждый контур является замкнутой ломаной линией без самопересечений и описывается последовательностью угловых точек. Каждая точка контура задается координатами в декартовой системе относительно нижнего, левого угла кристалла.  [c.153]

Определение псевдотензора. В 2, касаясь определения понятия тензор , ш фактически использовали инвариантность тензо ра по отношению к любой системе координат (п.З).В физике и механике оказывается полезным (в основном из-за его наглядности в одновалентном случае) еще одно понятие - псевдотензор . Приведем его определение для ортонормированного базиса ,63.  [c.22]

В заключение этого параграфа сделаем следующее общее замечание о законах сохранения. Формулировка каждого из этих законов имеет следующий вид некоторое выражение, зависящее от координат точек и их скоростей, при движении системы не меняется . Эти выражения не зависят от ускорений точек и в этом смысле являются первыми интегралами уравнений движения. В дальнейшем (см. гл. VII) мы вернемся к понятию первый интеграл и дадим его точное определение. Там же будет показано, что найденные выше первые интегралы — законы сохранения — являются следствиями основного предположения классической механики об однородности и изотропности пространства и об однородности времени (см. гл. VII). Отложив поэтому уточнение этого понятия до гл. VII, мы в 7 настоящей главы на важном примере продемонстрируем, как классическая механика использует законы сохранения для того, чтобы упростить (а в некоторых случаях и решить) дифференциальные уравнения, описывающие движение.  [c.77]

Книга адресована читателю, серьезно изучающему молекулярную спектроскопию, и хотя предполагается, что он знаком с основными постулатами квантовой механики, теория групп рассматривается здесь из первых принципов. Идея группы молекулярной симметрии вводится в начале книги (гл. 2) после определения понятия группы, основанного на использовании перестановок. Далее следует рассмотрение точечных групп и групп вращения. Определение представлений групп и общие соображения об использовании представлений для классификации состояний молекул даны в гл. 4 и 5. В гл. 6 рассматривается симметрия точного гамильтониана молекул и подчеркивается роль перестановок тождественных ядер и вращения молекулы как целого. Чтобы классифицировать состояния молекул, необходимо выбрать подходящие приближенные волновые функции п понять, как они преобразуются под действием операций симметрии. Преобразование волновых функций и координат, от которых волновые функции зависят, особенно углов Эйлера и нормальных координат, под действием операций симметрии подробно описывается в гл. 7, 8 и 10. В гл. 9 рассматриваются определение группы молекулярной симметрии и применение этой группы к различным системам. В гл. 11 определяется приближенная симметрия и описывается применение групп приближенной симметрии (таких, как точечная группа молекул), а также групп точной симметрии (таких, как группа молекулярной симметрии) для классификации уровней энергии, исследования возмущений, при выводе правил отбора для оптических  [c.9]

Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]


Ф ЗОВОЕ ПРОСТРАНСТВО в статистической физике, многомерное пространство, осями к-рого служат все обобщённые координаты и импульсы р-, ( =1, 2,. .., М) механич. системы с N степенями свободы. Т. о., Ф. п. имеет размерность 2N. Состояние системы изображается в Ф.п. точкой с координатами 51, р , i(fi, рц, а изменение состояния системы во времени—движением точки вдоль линии, называемой фазовой траекторией. Точки, соответствующие определ. значению энергии системы, образуют в Ф. п. (2JV- 1)-мерную поверхность, делящую пространство на две части — более высоких и более низких значений энергии. Поверхности разл. значений энергии не пересекаются. Траектории замкнуюй системы (с пост, значением лежат на этих поверхностях. В принципе траектория может быть рассчитана на основе законов механики, такой расчёт можно осуществить практически, если число частиц системы не слишком велико. Для статистич. описания состояния системы из мн. частиц вводится понятие фазового объёма (элемента объёма Ф. п.) и функции распределении системы — вероятности пребывания точки, изображающей состояние системы, в любом элементе фазового объёма. Понятие Ф.п.— основное для классич. статистич. физики (механики), изучающей ф-ции распределения системы из мн. частиц. Д. Н. Зубарев. ФАЗОВОЕ ПРОСТРАНСТВО в теории динамических систем—абстрактное пространство, ассоциированное с конкретной динамич. системой, точки в к-ром однозначно характеризуют все возможные состояния данной системы. Предполагается, что это пространство снабжено естеств. определением меры (расстояний, площадей и т. д.).  [c.267]

Принцип относительности в механике не позволяет однозначно выделить из множества систем отсчета абсолютную систему, оперируя при этом только механическими явлениями. Расширяя понятие принципа отьюсительности пр1 Ходим к основному постулату специальной теории относительности принцип относительности справедлив не только для законов механики, но и для всех остальных физических законов. В рамках специальной теории относительности (СТО) все физические законы должны иметь одинаковый вид во всех инерциальных системах отсчета, т, е. наблюдатели, находящиеся в различных инерциальных системах, должны получать совершенно одинаковое динамическое описание одних и тех же физических явлений. Если это так, то понятие абсолютного пространства полностью теряет смысл, поскольку любую инер-цияльную систему с полным правом можно объявить абсолютной системой отсчета. Конечно, нам никто не мешает назвать абсолютной системой одну определенную инерциальную систему, например ту, которая покоится относительно неподвижных звезд, и записать все физические законы в координатах выбранной системы. Однако такая процедура чрезвычайно неудовлетворительна из-ва произвола в выборе самой системы отсчета. Более того, выбор конкретной системы вносит усложнения в физические исследования. Обычно эксперименты, из которых выводятся физические законы, выполняются не в системе отсчета, связанной с неподвижными звездами. Если пренебречь ускорением Земли при ее движении в течение года вокруг Солнца, то с Землей можно связать инерциальную систему, переход от которой к системе неподвижных звезд несколько неудобен.  [c.12]


Смотреть страницы где упоминается термин ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Системы координат : [c.248]    [c.91]    [c.21]   
Смотреть главы в:

Нестационарная аэродинамика баллистического полета  -> ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Системы координат



ПОИСК



160, 387, 388 — Определение Понятие

Координаты определение

Координаты системы

Основные Координаты

Основные Основные определения

Основные определения

Основные понятия 1.2. Основные понятия и определения

Основные понятия и определения

Основные системы координат

Система координат основная

Система определение

Система основная

Системы Понятие



© 2025 Mash-xxl.info Реклама на сайте