Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нелинейные тела (линеаризованные задачи)

Нелинейные тела (линеаризованные задачи)  [c.12]

В главах 1—3 изложены общие вопросы. Приведены сведения об основных моделях, применяемых при решении дифракционных задач. Изложены основные соотношения линейных упругих и вязко-упругих тел. Дана постановка линеаризованных задач для нелинейных тел. Изложена классическая и уточ-  [c.6]

Если jo = 1 ( - е. ji = )), то при описании движения тела в рамках линеаризованных уравнений движения мы получаем, что отклонение тела от его равновесного положения = О неограниченно возрастает со временем, так как уравнение (41) имеет частное решение вида (36) при и = jo, а = 2). При нелинейной трактовке задачи о движении твердого тела при резонансе ситуация иная. В самом деле, пусть в начальный момент = О, ф = 0. Тогда (с погрешностью, порядок которой не ниже чем е ) и R = при t = 0. Следовательно, в интеграле % = h постоянная h равна нулю и во все время движения  [c.512]


Появление динамической взаимосвязи движений подсистем, в линеаризованном приближении полностью независимых. В ряде задач динамики твердых тел динамическая связь между углами поворота вокруг различных осей проявляется только в нелинейном приближении.  [c.104]

Исследование динамических задач теории упругости в нелинейной постановке относится к одной из сложных и мало разработанных областей механики твердого деформируемого тела. В то же время существует целый класс задач, в которых на некоторое конечное напряженное статическое состояние накладываются малые динамические возмущения. Это позволяет в строгой постановке строить решение статической задачи, а динамику явлений, основываясь на малости динамических возмущений, исследовать на базе линеаризованных относительно некоторой малой окрестности напряженного состояния соотношений. При этом в полном объеме сохраняется присущая нелинейным задачам специфика постановки краевых задач в зависимости от используемой системы координат и используемых в процессе решения тензорных и векторных величин, описывающих напряженное состояние среды.  [c.34]

Разработан метод исследования динамики твердых тел (частиц), расположенных у границы сжимаемой вязкой жидкости, при прохождении акустической волны. Действие жидкости на тело (частицу) определяется средними по времени силами, представляющими постоянные во времени слагаемые гидродинамических сил. В связи с этим используется разработанный ранее метод вычисления давления в сжимаемой вязкой жидкости с сохранением слагаемых, квадратичных по параметрам волнового поля. Метод основан на использовании упрощенной (применительно к волновым движениям жидкости) системы исходных нелинейных уравнений гидромеханики. Оказалось возможным при вычислении напряжений в жидкости сохранить величины второго порядка, не решая систему нелинейных уравнений. Напряжения удается выразить через величины, определяемые с помощью линеаризованных уравнений сжимаемой вязкой жидкости. Для этого используются представления решений линеаризованных уравнений через скалярный и векторный потенциалы. На основе этого метода сформулирована задача для цилиндра у плоской стенки при падении волны перпендикулярно стенке, и рассмотрен конкретный пример.  [c.342]

Во многих случаях для суждения об устойчивости можно предположить возмущения достаточно малыми и исследовать их характер, исходя из линеаризованных уравнений возмущенного движения. Покажем порядок составления линеаризованных уравнений применительно к задачам об устойчивости форм движения упругого тела. При этом будем исходить из уравнений нелинейной теории упругости в форме, предложенной  [c.331]


Уравнения первого приближения (уравнения в вариациях) для исследования окрестности точек либрации L и б ограниченной эллиптической задачи трех тел составляют линейную систему с 2л-периодическими (относительно истинной аномалии возмущающих тел) функциями, поэтому даже в первом приближении вопрос об их устойчивости представляется весьма сложным. Для близкого к единице эксцентриситета орбит возмущающих масс точки либрации L и Ц неустойчивы в смысле Ляпунова [85]. Здесь же сформулирована теорема об устойчивости, которая оказывается верной лишь с точностью до первой степени эксцентриситета орбит возмущающих масс. Этот результат согласуется с результатами исследования Ляпунова [64]. В дальнейшем многие исследователи [86], [129], [130], [131] и др., пользуясь аналитическими или численными методами, строили области устойчивости и неустойчивости на плоскости параметров 1, е (ц — малая возмущающая масса, е — эксцентриситет ее орбиты) для линеаризованной системы уравнений (уравнений первого приближения). В нелинейной постановке при малых е  [c.846]

Проведенные оценки дают возможность выявить наиболее существенные факторы и отбросить второстепенные. Для целей предварительного анализа траекторий движения КА в 2 была использована простейшая модель линеаризованной в окрестности Ьг круговой ограниченной задачи трех тел. Для более точного описания пассивного движения КА необходимо в первую очередь учесть нелинейность задачи по отклонениям от равновесной точки и эллиптичность орбиты Луны. В следующем параграфе будет рассмотрена нелинейная задача о движении КА в окрестности Ьг в рамках эллиптической ограниченной задачи трех тел (Земля — Луна — КА) без учета возмущающего влияния Солнца и других внешних факторов. Эта задача имеет и самостоятельный интерес. Ее решение можно положить в основу алгоритма расчета пассивного движения КА в окрестности Ьг-  [c.281]

Принимается, что закон Гука в форме (2.1.1) представляет собой не линеаризованное, а точное соотношение, причем используемые при его формулировке переменные - напряжения, перемещения и координаты - можно полагать либо лагранжевыми, либо эйлеровыми (см. 3.1). Тем самым вводятся две различные механические системы, отличия между которыми проявляются в области, где существенна геометрическая нелинейность. В том же параграфе показано, что решения задач из гл. 2 для трещин, берега которых свободны от внешних нагрузок, отвечают лагранжевой интерпретации и соответствуют определяемой ею модели упругого тела. Модель эта характеризуется взаимно однозначной связью между напряжениями - тензором Пиолы-Кирхгофа и градиентом перемещения. Последний определяет потенциальную энергию системы. Однако данная модель не отвечает никакому реальному уравнению состояния. Достаточно сказать, что напряжения (ограниченные) возникают здесь и при повороте тела в целом. Для модели, соответствующей эйлеровой интерпретации, кроме того, энергия деформации непотенциальна.  [c.68]

Задача о непосредственном интегрировании нелинейных уравнений газодинамики как в области дозвуковых, так и сверхзвуковых скоростей, представила большие и, казалось, непреодолимые математические трудности. Сделанная в конце XIX в. Моленброком попытка обойти эту трудность путем применения известного касательного преобразования Лежандра не дала вначале заметных результатов. Рассмотрение приближенных линеаризованных уравнений, соответствующих малым возмущениям в теории топкого крыла или тела вращения, привело к ряду важных результатов, среди которых следует особо выделить решение плоской дозвуковой задачи Прандтлем и Глауэртом в 1910 г., плоской сверхзвуковой задачи Аккеретом в 1925 г., с последующими уточнениями в исследованиях советского ученого Донова в 1937 г. Пространственная линеаризованная задача для симметричного обтекания тонкого тела вращения была рассмотрена Карманом и Муром в 1932 г. Аналогичная теория была затем в 1938 г. применена Ченем к случаю несимметричного обтекания тонкого тела вращения под углом атаки. Карман первый решил вариационную задачу о тонком теле наименьшего сопротивления в симметричном сверхзвуковом потоке. Дальнейшее развитие этой задачи принадлежало Хейсу и Джонсу, а также ряду советских ученых (В. Н. Жигулев, Ю. Л. Жилин, М. Н. Коган,  [c.35]


Наиболее существенные результаты в динамической механике разрушения получены в рамках линеаризованной теории, в которой предполагается, что зона проявления нелинейных эффектов мала по сравнению с длиной трещины, а поле напряжений вокруг пластической области оппсывается асимптотическими формулами, полученными из решения упругой задачи. Это поле напряжений сингулярно, и главный член его разложения по степеням расстояния от конца трещины г, как п в статике, имеет вид К/У г. Угловое же распределение напряжений и перемещений в окрестности вершины стационарной трещины одинаково при статическом и динамическом нагружении, а влияние инерционного эффекта заключается в том, что коэффициент интенсивности напряжений становится зависящим от времени. Кроме того, исследования показывают, что спустя некоторый период времени после приложения нагрузки характер зависимости коэффициентов интенсивности напряжений и импульсных нагрузок от времени идентичен. Однако в течение этого периода времени коэффициент интенсивности напряжений достигает своего пикового значения, иногда значительно превышающего статическое (аналогичный вывод можно сделать и в случае гармонического нагружения тела с трещиной).  [c.407]

В настоящей главе приводится краткая сводка основных положений, понятий и терминов из нелинейной теории упругости, которые необходимы при проведении по еле довательной линеаризации определяющих соотношений динамики предварительно напряженных тел в окрестности их некоторого начального напряженного состояния, а также для цельности и прозрачности изложения линеаризованной теории динамических контактных задач для предварительно напряженных сред. Сведения носят справочный характер и не претендуют на полноту и по с л е д овате льно сть.  [c.10]

В общем случае изучение механических процессов в начально-деформированных телах необходимо проводить в рамках нелинейной теории упругости. Однако, множество процессов, происходящих в начально-деформированных телах, можно рассматривать в рамках линеаризованной теории наложения малых деформаций (возмущений) на конечные деформации (начальное состояние) в предположении, что возмущения малы. Традиционно [30, 41, 42] различают три состояния тела естественное (ненапряженное) состояние (ЕС), начально-деформированное состояние (НДС) и актуальное (возмущенное по отношению к НДС) состояние. При этом особое значение приобретает выбор системы координат, которая может быть связана либо с естественной конфигурацией (система координат Лагранжа или материальная система координат), либо с актуальной конфигурацией (система координат Эйлера) [30, 41, 42]. Линеаризованные уравнения движения существенным образом зависят как от выбора системы координат, так и от выбора определяющих соотношений, поскольку имеет место возможность определения напряженного состояния различными тензорами (Коши, Пиола, Кирхгофа и т.д.) и множественность их представления через меры деформации (Коши-Грина, Фингера, Альманзи) или градиент места. Более детально с особенностями постановки задач для преднапряженных тел можно ознакомиться в монографиях А. И. Лурье [41], А. Лява [42] и А. Н. Гузя [30].  [c.290]

Тензор Пги называется тензором деформации. Очевидно, тензор й симметричен, т. е. Нгй=Ий(- Обратим внимание на то, что нелинейно зависит от производных вектора смещения. Поскольку такого рода нелинейность не связана с физическими свойствами тела, ее принято называть геометрической нелинейностью. В большинстве случаев деформации г/гй малы по сравнению с единицей, поэтому нелинейная добавка в выражении (1.1) представляет собой величину второго порядка малости. В линейных задачах этой добавкой пренебрегают и оперируют с линеаризованным тензором деформации иц1 = /2 ди1/дх дик/дх1). В таком приближении из (1.1) следует, что диагональные компоненты тензора — величины ц, 22. Нзз — представляют собой относительные удлинения (йх —йх1)/с1х1 вдоль соответствующих осей, а недиагональные компоненты (при 1фк) — половины углов сдвига выделенного элемента объема тела в плоскостях х х.,, х,Хз и Х1Х3. След тензора — сумма диагональных компонент иц — представляет собой относительное изменение объема тела иц=(с1У —йУ) йУ. В соответствии со сказанным величины й при =к называют деформациями растяжения (сжатия), а при 1= к — деформациями сдвига.  [c.189]

Для системы из двух упругосоединенных тел, моделирующих массивные сооружения, такие, как одноэтажные здания, здания о первым гибким этажом и др., используя метод статистичеокой линеаризации, получены замкнутые аналитические решения данной нелинейной задачи. Рассматриваемый подход также позволяет рассчитывать параметры упругих пространственных колебаний сооружений при малых перемещениях и углах поворота. Линеаризованные уравнения движения [42] для малых амплитуд колебаний интегрируют в замкнутом виде. Эти решения могут служить основой для построения инженерных алгоритмов определения сейсмической нагрузки в виде главных векторов сейсмических сил и моментов.  [c.47]


Смотреть страницы где упоминается термин Нелинейные тела (линеаризованные задачи) : [c.321]    [c.332]    [c.461]    [c.7]    [c.34]    [c.37]    [c.343]    [c.165]   
Смотреть главы в:

Дифракция упругих волн  -> Нелинейные тела (линеаризованные задачи)



ПОИСК



Нелинейные задачи



© 2025 Mash-xxl.info Реклама на сайте