Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Микроструктура и термическая обработка сплавов

Микроструктура и термическая обработка сплавов  [c.195]

Диаграммы состояния позволяют определить, какую микроструктуру будут иметь медленно охлажденные сплавы, а также решить вопрос о том, можно ли добиться изменения микроструктуры путем термической обработки сплава. Поскольку технологические и эксплуатационные свойства сплавов тесно связаны с их микроструктурой, знание диаграмм состояния чрезвычайно важно для практического металловедения.  [c.72]


Зависимость предела выносливости отечественных сплавов ВТ8 и ВТЗ-1 от макро- и микроструктуры исследовали авторы работы [129]. Определенным подбором горячей деформации и термической обработки были получены сплавы с различной структурой, которая оценивалась по шкалам АМТУ 518—69 (балл  [c.152]

Термическая обработка, микроструктура и дисперсионное упрочнение сплавов многокомпонентной промышленной серии 2000 могут быть поняты до некоторой степени при изучении основной бинарной системы А1 — Си. Алюминиевый угол диаграммы состояния этой системы показан на рис. 85. Алюминий может удерживать в твердом растворе до 5,7 % меди. Сплавы серии 2000 нагреваются под закалку до температуры в пределах от 493 до 535°С.  [c.234]

Механические свойства прессованных и термически обработанных сплавов САС-Д16 и САС-В96 приведены в табл. 26. Термическая обработка этих сплавов проводится по режимам, установленным для сплавов Д16 и В96. Микроструктура их после длительного нагрева при температурах 350—400° С остается без изменений.  [c.106]

Термическая обработка сплавов с точкой плавления ниже 1100°, применяемая для определения линии солидус методом закалки, обычно не представляет трудности. В этом случае образцы запаивают в откаченные стеклянные или кварцевые трубочки и нагревают до соответствующих температур в условиях, описанных в главе 4. Некоторые сплавы, например алюминиевые, находясь в контакте со стеклом цри температурах, близких к линии солидус, легко загрязняются окисью кремния. Чтобы избежать соприкосновения исследуемого образца со стеклом, должны применяться алюминиевые кольца. Было установлено, что для полного отжига достаточно 30 мин. и в таких случаях температуру лучше всего регулировать вручную с помощью переменного сопротивления в цепи печи (при температурах до 1100 допускаются колебания не более 0,5°). В этом температурном интервале успех рассматриваемого метода в значительной степени зависит от легкости выявления микроструктуры сплава, а также и от того, насколько превращения, про- <5  [c.199]

Ковка и термическая обработка по режимам, предусматривающим образование небольших количеств т -фазы — полезный способ практического управления микроструктурой. Многие годы ковку сплава А-286 заканчивали вблизи температуры 226  [c.226]

Электроиндуктивный метод контроля применяют для выявления поверхностных дефектов на изделиях простой формы из чистых металлов (однофазных сплавов), а также для разбраковки изделий по твердости, анализа микроструктуры после термической обработки и т. д. Метод основан на замере изменений возбуждаемых в металле вихревых токов под влиянием неоднородности металла.  [c.36]


Контролю на величину зерна, загрязненность неметаллическими включениями, полноту рекристаллизации по микроструктуре (после термической обработки) подвергают также трубы некоторых видов из нержавеющей и жаропрочной стали и сплавов.  [c.942]

Преобладание каждой из этих реакций в зависимости от времени, температуры, состава сплава и дефектов структуры наиболее хорошо представить в форме диаграмм образования зародышей. Такие диаграммы имеются в литературе для сплавов бинарной системы А1—Си [119]. Диаграммы образования зародышей для промышленных сплавов отсутствуют, хотя они были бы очень полезны при анализе процессов термической обработки, структуры и сопротивления коррозии. Для установления количественных связей между термической обработкой, микроструктурой и сопротивлением КР высокопрочных алюминиевых сплавов необходимо знать о характере их взаимоотношения. Должны быть проанализированы метастабильные и стабильные диаграммы, а также диаграммы образования зародышей и кривые V—К для каждого сплава в условиях различной термообработки. Из следующих разделов будет ясно, что наши знания в настоящее время об этих взаимоотношениях являются в лучшем случае отрывочными.  [c.236]

Как правило, это не зависит от микроструктуры. Однако обработка в р-области, при которой получают игольчатые структуры, например р-5ТА (высокотемпературная обработка на твердый раствор + старение), приводит к увеличению вязкости разрушения. В приведенном на рис. 74 примере увеличение вязкости разрушения составляет 33 МПа-м . При этом следует заметить, что улучшение таких свойств зависит и от состава сплава (см. рис. 73). В менее чувствительных к КР сплавах, например в сплаве — 4А1—ЗМо—IV положительное влияние технологической обработки в р-области более выражено для высоких уровней прочности [41]. В высокочувствительных к КР сплавах, например сплавах на основе Т1 — 8А1 или сплавах с высоким содержанием кислорода, структуры, полученные р-обработкой на твердый раствор с последующим быстрым о.хлаждением, относительно устойчивы к КР. В сплавах с такими структурами после старения нивелируется благоприятное влияние термической обработки в р-области за счет свойственной чувствительности к КР. Эти эффекты более детально описываются в разделе по практическим аспектам коррозионного растрескивания титановых сплавов.  [c.367]

Было показано, что очень высокие остаточные напряжения возникают после сварки. Например, напряжения в долевом направлении по отношению к центральной граничной линии сварного шва >414 МПа были замерены в сплаве Т1—6А1—4У [233]. Большинство сварных конструкций после сварки подвергаются термической обработке (циклической), точные режимы, которой зависят от сплава. Наиболее широко на практике применяется нагрев в интервале 540—870 °С в течение 15—60 мин. Наконец, следует отметить, что металл сварного шва и зона, подверженная нагреву, будут иметь различные микроструктуры по отношению к основному металлу. Эти микроструктуры должны видоизменяться в дальнейшем за счет термообработки, проводимой после сварки. Режимы термической обработки должны быть выбраны с учетом возможного образования нежелательной фазы в структуре. Например, медленное охлаждение сплава Т1—5А1 — 2,58п в результате может привести к выделению пг-физы. т. е. к увеличению чувствительности к КР-  [c.415]

Под изломом понимают поверхность, образующуюся в результате разрушения метал.ча. Вид излома определяется условиями нагружения, кристаллографическим строением н микроструктурой металла (сплава), формируемой технологией его выплавки, обработки давлением, термической обработки, температурой и средой, в которых работает конструкция.  [c.10]

Эти реакции поставляют низшие карбиды в различные участки микроструктуры сплава, но обычнее всего по границам зерен. Пожалуй, самой выгодной является реакция (4.2) или (4.3) это подтверждено применительно к различным режимам термической обработки. Важны образующиеся в процессе реакций и коагулированные карбидные выделения, и выделения у -фазы. Полагают, что карбиды подавляют зернограничное проскальзывание, выше об этом уже говорили у -фаза, порождаемая в процессе подобных реакций, как перчатка, одевает и эти карбиды, и границы зерен, создавая относительно пластичный слой с хорошим сопротивлением  [c.152]


Микроструктура современных кобальтовых сплавов проявляет сильную зависимость от химического состава, кристаллографии фаз и термомеханической предыстории. Природа и морфология выделяющихся фаз также представляет собой мощный фактор, определяющий уровень механических свойств и структурную стабильность сплавов данной системы в реальных условиях эксплуатации. Следовательно, весьма важно изучить роль, которую играет микроструктура сплава, и дать описание и оценку изменениям микроструктуры в результате проведения того или иного цикла термической обработки, а также старения в процессе эксплуатации.  [c.195]

Этот раздел мы посвятим обзору данных о зависимости механических свойств кобальтовых сплавов от их химического и фазового состава, от режимов термической обработки, упомянутых выше, и проведем широкое сравнение этих свойств со свойствами никелевых сплавов. Сведения о конкретных значениях механических свойств сосредоточены в приложении Бив общедоступной литературе. Сведения о влиянии длительного старения кобальтовых сплавов в условиях эксплуатации на их свойства и микроструктуру приведены в конце раздела.  [c.204]

В части управления микроструктурой в процессе обработки железоникелевые сплавы значительно более удобный объект, чем суперсплавы на никелевой основе [20]. Это преимущество непосредственно связано с возможностью использовать для управления размером зерен выделение т - или 6-фаз. Чтобы обеспечить рекристаллизацию в процессе ковки или термической обработки, его температура должна превышать температуры сольвус для фаз к и у (приведены в табл. 6.2 для некоторых промышленных сплавов). Если рекристаллизация возможна ниже температур сольвус фаз т или 6, эти фазы станут эффективным средством для управления ростом зерна. Температуры сольвус т - и 6-фаз для некоторых промышленных сплавов также приведены в табл. 6.2.  [c.235]

Термическая обработка на твердый раствор воздействует и на другие фазы, не только на фазу у. Начинают переходить в твердый раствор карбиды типа МС. В процессе охлаждения не хватает времени для образования важных и благоприятных выделений карбидов типа М зС , однако сохраняется запас углерода, позволяющий осуществить такое старение по карбидам посредством термической обработки при более низких температурах. Такая возможность весьма благоприятна для некоторых Hf-содержащих сплавов со столбчатой микроструктурой (MAR—М 200), где в литом состоянии отсутствуют выделения карбидов типа M j g, оказывающих полезное влияние на свойства сплава. Гомогенизация сплавов в процессе обработки на твердый раствор помогает избежать образования нежелательных фаз типа 0 или ц в зоне повышенной сегрегации (в междендритных участках).  [c.256]

Интерметаллиды могут быть анодными (Мд5А18) или катодными (СиАЬ). В первом случае происходит предпочтительное растворение, во втором они не корродируют, но стимулируют коррозию прилегающей обедненной зоны. В любом случае имеет место избирательная коррозия вдоль границ зерен. Степень чувствительности сплава к межкристаллитной коррозии может в заметной степени быть разной и зависеть от микроструктуры (в частности, от количества, размера и распределения второй фазы). В свою очередь микроструктура является результатом его металлургической наследственности и термической обработки. Термическая обработка, способствующая равномерному распаду по зерну, приводит к уменьщ ению тенденции к межкристаллитной коррозии. Важно также отметить, что в определенных условиях сплавы систем А1—Mg—81 и А1—Mg—Си могут быть подвержены межкристаллитной коррозии, но не быть чувствительными к КР [51, 56—58].  [c.165]

Определенным подбором горячей деформации и термической обработки в работе [14] были получены различные структуры сплавов, которые оценивались по шкалам АМТУ 518—69 (балл макро- и микроструктуры). Усталостные образцы диаметром рабочей части 5,0—7,5 мм вырезались как из прессованных или кованых прутков, так и из штампованных лопаток. Испытание гладких и надрезанных ( = 1,89) образцов велось при чистом круговом изгибе. Основные результаты испытаний при комнатной температуре приведены в табл. 37. Данные табл. 37 показывают, что огрубление макро- и микроструктуры (увеличение балльности) заметно снижает усталостную прочность титановых сплавов, при этом самостоятельное значение имеет и макроструктура и микроструктура. Более чувствительным к структуре материалом оказался сплав ВТЗ-1. Характерно, что испытания образцов, вырезанных из штампованных лопаток сплава ВТ8, которые подвергались высокотемпературной термомеханической обработке (ВТМО), показали предел усталости 73—77 кгс/мм - против 65 кгс/мм без ВТМО. Очевидно, ВТМО дает большую структурную однородность, Повышаюш,ую предел усталости. Близкие к изложенным результатам получены данные для сплавов ВТ8 и ВТ9.  [c.145]

Сплав IN-718 был разработан как деформируемый дисковый материал с хорошей свариваемостью и превосходными характеристиками прочности примерно до 650 °С. Современная практика высококачественного промышленного производства включает использование чистых (первичных) сырьевых материалов, вакуумной выплавки, фильтрования на этой основе сплав IN-718 теперь предпочитают использовать в качестве материала главного корпуса и других крупных элементов конструкции двигателя, которые изготавливают литьем с последуюш,им горячим изостатическим прессованием и термической обработкой (рис. 15.17). В литой структуре могут присутствовать фазы Лавеса (рис. 15.16, в) чтобы обеспечить сплаву требуемые свойства, содержание фаз Лавеса должно быть минимальным. Этой цели можно достичь путем гомогенизации при 1120 °С или выше длительность гомогенизации определяется фактической степенью ликвации. Горячее изостатическое прессование и/или гомогенизирующая обработка способны вызвать нежелательное растворение выделений б (NijNb) фазы, являющихся нормальной компонентой микроструктуры (рис. 15.16, г) такое растворение сообщает изделиям чувствительность к надрезу в условиях ползу-  [c.189]


Исследование [64] термической обработки сплава Ren6 77 (свободного от O -фазы, основу которого составляет сплав U-700/Astroloy) иллюстрировано на рис. 4.13. Можно видеть, что обработка по режиму Б обеспечивает значительное улучшение характеристик длительной прочности против тех, что дает режим А показана и разница в микроструктуре. После обеих обработок у -фаза переходила в раствор при 1100 °С, однако выделение у -фазы по реакции старения начиналось при 1140 °С. Медленное охлаждение в режиме А сопровождается образованием немногочисленных крупных зародышей у -фазы выше 1085 °С, а затем большое количество ее мелкодисперсных выделений появляется в процессе выдержки  [c.169]

Фазовый состав и микроструктура титановых сплавов изменяются в зависимости от содержания и соотношения легирующих элементов. Основой микроструктуры титановых сплавов являются твердые растворы а- и р-титана. Количественное соотношение между этими фазами в отожженном состоянии определяет классификацию титановых сплавов, которые подразделяют на а- и р-сплавы, псевдо-а- и псевдо-р-сплавы, двухфазные а+р-сплавы [294], На изменение количественного соотношения а- и р-фаз существенно влияет легирование (имеются элементы -стабилизаторы, например алюминий, и р-стабйлизаторы — молибден, ванадий, хром, железо и др.) и термическая обработка. При охлаждении с определенных температур нагрева возможно зафиксировать при комнатной температуре метастабильные фазы р, а или а". Характерная особенность а- и сх-Нр-сплавов — резкое укрупнение микроструктуры при переходе в р-область. Этот процесс слабее проявляется в высоколегированных р-сплавах [294, 295].  [c.180]

Повышенное содержание железа способствует увеличению гетерогенизации структуры и снижает эффект действия легирующих элементов при термической обработке сплавов. С этой точки зрения в сплавах типа силумин не следовало бы иметь железа больше 0,2%. Однако в целях лучшего использования низких сортов алюминия приходится допускать содержание железа как примеси в сплавах значительно больше 0,2%. Следует отметить, что степень вредности железа снижается по мере измельчения микроструктуры сплавов. Поэтому, например, при литье в землю  [c.341]

Микроскопический анализ производится при больших увеличениях метал-ломикроскопом. Для микроисследования изготовляется специальный образец — микрошлиф. При помощи микроанализа изучаются общая микроструктура наличие перегрева — крупное зерно, величина и характер расположения струк турных составляющих сплава, неметаллические включения, величина зерна наличие межкристаллитной коррозии, микротрещины, степень деформации качество сварного шва н горячей механической и термической обработки. Макро и микроанализы являются неотъемлемой частью всякого контрольного аспыта ния металлических материалов.  [c.60]

Выбор высокопрочных алюминиевых сплавов весьма велик (некоторые из них приведены в табл. 20.1). Соотношение компонентов и режим термической обработки этих сплавов обычно выбирают с таким расчетом, чтобы склонность к КРН была минимальной. Термическая обработка с образованием твердого раствора влияет на склонность к коррозионному растрескиваткию, так как изменяет состав сплава в области границ зерен и микроструктуру сплава [33]. В некоторых случаях эксплуатационные температуры, особенно превышающие комнатные значения, могут приводить к искусственному старению сплава. При этом склонность к растрескиванию может увеличиться, и в присутствии влаги или хлорида натрия произойдет преждевременное разрушение металла. Любой из описанных выше сплавов проявляет наибольшую склонность к растрескиванию в тех случаях, когда растягивающее напряжение действует по нормали к направлению прокатки. По-видимому, в этом случае в процессе участвует большая часть граничных поверхностей удлиненных зерен, вдоль которых распространяются трещины.  [c.354]

Исследование микроструктуры. Исследование микроструктуры дает возможность более глубоко изучить структуру основного металла и характерных зон сварного соединения, чем исследование макроструктуры. По микроструктуре обследуемого объекта можно установить 1) характер изменения структуры металлов и сплавов после деформации, различных видов термической обработки и других технологических операций, а также коррозионных или эрозионных воздействий на материал рабочей среды в аппарате 2) установить форму и размер структурных составляющих, микроскопических трещин и т.п. повреждений металла 3) структуру наплавленного металла, структуру, образовавшуюся в зоне термического влияния 4) примерное содержание углерода в основном и наплавленном металле и в различных участках шва 5) приблизительный режим сварки и скорость ох.1тажде-ния металла шва и зоны термического влияния 6) количество слоев сварного шва и дефекты шва и структуры.  [c.308]

Сплав AJI4. Сплав широко применяется в авиамоторостроении и отличается лучшими литейными свойствами, но требует обязательного модифицирования и проведения термической обработки. Например, из сплава АЛ4 отливают головки блока двигателя внут-реннег-о сгорания (ДВС). Крупногабаритные отливки подвергают термообработке по режиму Тб закалка (в подогретой) воде с температуры 535°С и охлаждается в течение 15 ч до 17.5°С. Микроструктура модифицированного и термообработанного сплава АЛ4 состоит из зерен твердого раствора на основе алюминия и мелкозернистой эвтектики.  [c.70]

Фиг, 23, Микроструктура сплава МЛ4 (XlOO) а — после литья по границам зерен твердого раствора алюминия и цинка в магнии и внутри зерен видны включения химического соединения M Ala и фазы Т (химическое соединение магний—алюмнний-цинк) tf —после термической обработки по режиму Т4 хи-мическое соединение перешло в твердый раствор в — после термической, обработки по режиму Тб произошел распад твердого раствора с выделением химичес ого соединения Mg AIj и фазы Т,  [c.145]

Обобщены и систематизированы данные, полученные при металлографических исследованиях микроструктуры, фазового состава, механических свойств и коррозионной стойкости в зависимости от режима термической обработки горячекатаного листового проката, коррозионно-стойких сталей и сплавов. Приведены их микроструктуры после различных нагревов. Рассмотрен характер коррозионного разрушения сварных соединений коррозия ножевого типа, структурноизбирательная и межкристаллитная в зоне термического влияния после испытания в азотной, серной и фосфорной кислотах. Рекомендованы режимы термической обработки, обеспечивающие высокую коррозионную стойкость сталей и их сварных соединений.  [c.320]

Один из методов формирования структуры с высоким сопротивлением КР сплавов системы А1 — М , содержащих 4—-8 % Mg, сводится к следующему [101]. После гомогенизации в области температур существования твердого раствора а (427—566°С) (см. рис. 77) сплавы подвергаются горячей прокатке и отжигу в интервале температур 316—427 °С, чтобы удалить влияние деформационного упрочнения. После охлаждения пересыщенный твердый раствор обрабатывается вхолодную при температуре ниже 260 °С с нагартовкой не менее 20 %. Этот холоднодеформиро-ванный (нагартованный) металл подвергается затем термической обработке для получения равномерного распределения выделений Р-фазы с целью повышения сопротивления КР. Такая обработка состоит в нагревании до температуры между 204 и 274 °С (линия ( е на рис. 77) в течение периода от 2 до 24 ч. Положение линии на рцс. 77 показывает, что сплав с такой микроструктурой  [c.227]


Добавление марганца до известного предела неАтра> лизуег вредное действие железа. Примесь меди сни> жает коррозионную стойкость и пластичность сплава, но Ппвышает твёрдость, предел прочности при растяжении и предел текучести примесь магния придаёт сплаву способность к повышению механических свойств после термической обработки благодаря образованию соединения М з81 (см. сплавы АЛ4, АЛ9 . Обрабатываем мость резанием плохая. Сопротивление коррозии выше среднего. Свариваемость удовлетворительная. Микроструктура см. лист IV, 4 и 5.  [c.134]

Влияние термической обработки, макро- и микроструктуры. Разнообразие легирования и фазового состава титановых сплавов делает затруднительным классификацию их структур. Если технически чистый титан и чистые а-сплавы можно достаточно надежно различать по величине зерна, то уже в бетированных -сплавах, а там более в а + р-сплавах структура имеет запутанный характер и, естественно, ее надо рассматривать в тесной связи с составом сплава и его термической обработкой, а еш,е лучше с термопластической предысторией .  [c.145]

Теперь очень тщательно отрабатывают длительность печного нагрева. Причин этому две. Первая — в высокой стоимости энергии. Численный анализ теплопереноса позволяе очень точно определять минимальное время нагрева. Можно определить и скорости охлаждения при закалке после ковки или при термической обработке. Вторая причина — необходимость регулировать конечную микроструктуру. Надо знать все необходимое о фазовых равновесиях в сплаве, и, пользуясь этим знанием, правильно выбрать температуру и время для регулирования микроструктуры в заготовке до деформации, если хочешь получить ту или иную заданную микрост-  [c.214]

Моделирование, статистическая проверка процесса обработки, проверка ка чества заготовки, составление и применение деформационных карт, адекватно оснащение оборудования — все это очень мощные средства. Настало время, что бы применить их к созданию производственного пикла для конкретных сплавое конкретных микроструктур и конкретных, заранее заданных свойств. Заказчш выдвигает мотивированные требования улучшить качество и надежность продук ции, установить приемлемые цены эти требования заставляют промышленность i течение пяти лет поставить операцию чистовой ковки на прочную научную осно ну. Той же схеме должны следовать и требования к термической обработке Операции по предварительному обжатию слитков и по гомогенизации в ближайшие пять или более лет не потребуют столь глубокой научной проработки. В единстве с задачами термомеханического воздействия следует рассматривать управление процессами затвердевания, будь это порошковые материалы ил( слитки.  [c.218]

На рис. 4.11 показано, как выглядит микроструктура сплава U-700 (Astroloy) после термической обработки по режимам указанного типа и эксплуатации в реальных условиях. Так же будет выглядеть микроструктура сплава Nimoni 115, похожа на нее и структура сплавов Wasploy и U-500. Обратите внимание на совместное присутствие тонких и грубых выделений у -фазы, а также на оболочку из у -фазы, окружающую зернограничные выделения карбидов  [c.163]

Карбиды. Выводы, сделанные при рассмотрении металлургических аспектов карбидообрааования в деформируемых сплавах, в общем справедливы и применительно к литейным сплавам с "равноосной" микроструктурой. Основные отличия возникли после того, как во многие литейные сплавы стали вводить добавки тугоплавких металлов V группы и повысили в них содержание углерода. Любой рост содержания С предполагает увеличение интенсивности карбидных реакций при термической обработке и в процессе эксплуатации. Однако элементы V группы Nb и Та в громадной степени стабилизи-170  [c.170]

Наклепываемые кобальтовые сплавы из семейства многофазных обладают несколько более сложной микроструктурой. Эти сплавы упрочняются в результате инициированного деформированием превращения аустенитной у-матрицы (г.ц.к.) в е-фазу (г.п.), и одновременно выделения интерметаллических соединений типа фазы Лавеса OjMo или упорядоченной 03AI по поверхностям раздела г.ц.к. — г.п. и границам двойников. Режим термической обработки ограничен требованием сохранения наклепа на уровне, обусловленном тем или иным видом применения сплава и заданным уровнем механических свойств иными словами, температуру превращения превышать нельзя. Недавние усовершенствования [25] обеспечили кобальтовому сплаву при 704 °С такие механические свойства, что он стал конкурентноспособным по отношению к популярному никелевому сплаву Waspaloy.  [c.197]

Рис.6.9. Фазовые комбинации и влияние гомогенизирующей термической обработки на микроструктуру сплава 718, подвергнутого теплому деформированию (по данным D.R.Muzyka [20]), XIQOO Рис.6.9. Фазовые комбинации и влияние гомогенизирующей <a href="/info/6831">термической обработки</a> на <a href="/info/116873">микроструктуру сплава</a> 718, подвергнутого теплому деформированию (по данным D.R.Muzyka [20]), XIQOO
Будут разрабатывать монокристаллические суперсплавы с более высокими характеристиками прочности и жаропрочности, чем у сплавов, применяемых в настоящее время. Сплавы для отливок со столбчатой микроструктурой также будут улучшены (путем изменения и оптимизации хвмического состава и микроструктуры), однако по жаропрочности они всегда будут уступать монокристаллическим суперсплавам. Последнве, по-видимому, допускают дальнейший рост содержания тугоплавких легирующих элементов для повышения длительной прочности. Чтобы улучшить стойкость против окисления и горячей коррозии, будут использовать добавки химически активных элементов. Усовершенствуют процесс направленной кристаллизации сплавов с целью его удешевления и повышения качества продукции. Усовершенствование методов термической обработки и горячего изостати-ческого прессования также приведет к увеличению работоспособности сплавов направленной кристаллизации.  [c.276]


Смотреть страницы где упоминается термин Микроструктура и термическая обработка сплавов : [c.61]    [c.47]    [c.124]    [c.162]    [c.238]    [c.254]    [c.334]   
Смотреть главы в:

Суперсплавы II Жаропрочные материалы для аэрокосмических и промышленных энергоустановок Кн1  -> Микроструктура и термическая обработка сплавов



ПОИСК



Металлургические способы измельчения микроструктуры сплавов. ЮЗ Использование термической обработки для получения ультрамелкозер- и нистой микроструктуры

Микроструктур» сплавов

Микроструктура

Обработка сплавов

Обработка термическая сплавов термическая

Сплавы Термическая обработка



© 2025 Mash-xxl.info Реклама на сайте