Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основы теплопроводности

Теплопроводность сплавов в сильной степени зависит от их состава и температуры. У большинства сплавов на железной основе теплопроводность, как правило, понижается с увеличением, содержания углерода, хрома, кремния, марганца, никеля, и вольфрама.  [c.464]

Влияние фрикционного материала. В случаях применения фрикционных материалов (асбестовой тормозной ленты, вальцованной ленты, дисков, прессованных на латексном синтетическом каучуке и др.), имеющих в своей основе асбест, величина установившейся температуры при прочих равных условиях сохраняется почти неизменной. Следовательно, теплопроводность фрикционных материалов на асбестовой основе примерно одинакова. Установившаяся температура при накладках из вальцованной ленты обычно на 5—10° С выше, чем при накладках из тканой ленты (феродо), вследствие отсутствия в вальцованной ленте металлических включений. У металлокерамических накладок на железной основе, теплопроводность которых отличается от теплопроводности асбестовых материалов, величина установившейся температуры оказалась значительно (на 20—30° С) ниже установившейся температуры асбестовых материалов (рис. 8.12).  [c.380]


Теплопроводность чугуна снижается с увеличением количества графита и укрупнением пластинок. Она также зависит от структуры металлической основы. Теплопроводность феррита, перлита, аустенита, графита и цементита составляет соответственно 0,180—0,181 0,124 0,1 0,036  [c.183]

Передача тепла в пограничной пристенной зоне к стенке канала в основном осуществляется теплопроводностью. На основе выше изложенного следует предположить, что уменьшение термического сопротивления этой зоны и, следовательно, интенсификация всего процесса происходит за счет растущего с увеличением р проникновения в нее твердых частиц, увеличения объемной теплоемкости и уменьшения толщины зоны и изменением ее структуры. Разумеется, что предполагаемое соотношение термических сопротивлений основных зон потока при определенных критических условиях изменяется, так как с ростом концентрации р нарастают и отрицательные для теплообмена явления (гл. 7, 8). Поэтому указанные предпосылки и далее приводимые зависимости верны лишь при р<Ркр, м-< Акр [Л. 80, 98, 99].  [c.182]

Во второй части излагаются законы теплопроводности при стационарном и нестационарном режимах, основы теории подобия и конвективный теплообмен, излучение, а также основы расчета теплообменных аппаратов. Здесь же даются сведения о тепло- и массообмене во влажных коллоидных, капиллярно-пористых телах.  [c.4]

Важную группу составляют подшипниковые сплавы на основе алюминия, характерные высокой теплопроводностью, обеспечивающей меньшую температуру и соответственно меньшее изменение вязкости масла. Они обладают высокой коррозионной стойкостью и сопротивлением усталости, а также экономичны вследствие низкой стоимости исходного материала.  [c.378]

Основными видами сварки меди являются ручная дуговая покрытыми электродами, автоматическая под флюсом, в защитных газах плавящимся и неплавящимся электродом, газовая. В связи с высокой теплопроводностью меди сварку ведут на повышенных по сравнению со сталью величинах тока. Например, при ручной дуговой сварке покрытыми электродами величина тока выбирается из расчета /<.в=(50ч-60) э, где — диаметр электрода сварка ведется на постоянном токе с подогревом до 200—250°С. Мощность газового пламени по расходу ацетилена выбирают из расчета для толщин б<10 мм ис,н,=150-6 л/ч, для 6>Ю мм Ос.н.=200-6 л/ч е использованием, нормального пламени и флюсов на основе буры.  [c.137]

Анализ течения жидкого или газообразного теплоносителя на основе уравнений Навье—Стокса проводится при проектировании ядерных реакторов. Кроме того, особо важная роль при проектировании ядерных установок отводится расчету тепловыделяющей системы, математической моделью (ММ) которой является нестационарное уравнение теплопроводности. В этом случае в уравнении (1.6) дополнительно появляется член, описывающий изменение искомого температурного поля во времени. При анализе тепловых процессов в тепловыделяющих элементах (ТВЭЛах), например в высокотемпературных газоохлаждаемых реакторах, уравнение теплопроводности удобнее записывать в сферических координатах в виде  [c.10]


Жаропрочные малоуглеродистые стали на основе 2-12% хрома благодаря сравнительно низкой стоимости, высокой теплопроводности, малого температурного коэффициента линейного расширения и хорошей релаксационной способности, возможности регулирования механических свойств в широких пределах посредством термической обработки и относительно высокой коррозионно-механической стойкости являются наиболее приемлемыми и отвечают эксплуатационным требованиям, предъявляемым к конструктивным элементам технологических установок нефтеперерабатывающих и нефтехимических заводов. Повышение содержания хрома и дополнительное легирование карбидообразующими присадками оказывают положительное влияние на коррозионную стойкость этих сталей в горячих средах основных процессов переработки нефти, коррозионная активность которых прежде  [c.94]

Двухжидкостная модель-). Хотя полное объяснение свойств теплопроводности сверхпроводников может быть дано только на основе детальной микроскопической теории сверхпроводимости, однако для качественных заключений можно воспользоваться двухжидкостной моделью ), которая, хотя и не объясняет явления, служит удобной схемой для описания сверхпроводников и, по-видимому, в дальнейшем будет подтверждена последовательной микроскопической теорией.  [c.295]

Несмотря на перечисленные трудности, метод адиабатического размагничивания послужил основой большого числа новых исследований. Наиболее простыми являются эксперименты, относящиеся к определению магнитных свойств самих парамагнитных солей и достигаемых с их помощью абсолютных температур. Однако ири помощи солей охлаждались также и другие материалы с целью проведения на них физических измерений. В последние годы были изучены свойства жидкого гелия, открыто несколько новых сверхпроводников и измерена электропроводность и теплопроводность многих металлов.  [c.424]

Все феноменологические законы, в которые входят коэффициенты переноса, служат для замыкания системы уравнений гидродинамики. Однако такой подход к проблеме описания неравновесной системы на гидродинамическом этапе не является фактическим ее рещением, так как остаются не доказанными уравнения переноса (закон Фика и др.) и неизвестны коэффициенты переноса (коэффициенты диффузии, теплопроводности, вязкости и т. д.). Только микроскопическая теория позволяет решить эту проблему на основе решения кинетического уравнения. Одночастичная функция распределения /(г, V, t) содержит всю информацию о плотности, скорости, температуре, напряжениях и тепловом потоке в неравновесной системе. Это возможно потому, что /(г, V, t) зависит от семи переменных, а не от четырех, как все перечисленные макроскопические параметры.  [c.140]

Как уже отмечалось, Лоренц применил свою модель бинарной смеси для описания движения электронов в металлах. При этом, вычисляя коэффициенты электро- и теплопроводности на основе полученного для этой модели кинетического уравнения (8.58), он использовал в качестве /о(у) максвелловское распределение (8.65). Оно было единственно разумным в 1905 г., но оно же в первую очередь явилось причиной непригодности модели Лоренца к электронному газу в металлах, так как электронный газ в металлах вплоть до 10 сильно вырожден.  [c.157]

Учение о теплообмене является частью общего учения о теплоте, основы которого заложены М. В. Ломоносовым. На основе корпускулярной теории строения вещества М. В. Ломоносов дал правильное представление о механизме процесса передачи теплоты. В работе Размышления о причине теплоты и холода (1750) Ломоносов так поясняет явление теплопроводности Если более теплое тело А находится в соприкосновении с другим телом В, менее теплым, то находящиеся в точках соприкосновения частицы тела А, вращаясь быстрее, чем соседние с ними частицы тела В, более быстрым вращением ускоряют вращательное движение частиц тела В, т. е. передают им часть своего движения... .  [c.242]

Основы математической теории теплопроводности были заложены работами французского ученого Ж- Фурье (1822).  [c.242]


Коэффициент теплопроводности инертной газовой смеси вычисляется по теплопроводности компонентов [19]. Для некоторых веществ коэффициенты бинарной диффузии имеются в [2], но в большинстве случаев их приходится оценивать на основе молекулярной теории строения газов.  [c.366]

Коэффициент теплопроводности к в законе Фурье (8.1) характеризует способность данного вещества проводить теплоту. Значения коэффициентов теплопроводности приводятся в справочниках по теплофизическим свойствам веществ. Численно коэффициент теплопроводности l==q/grad t равен плотности теплового потока при градиенте температуры 1 К/м. Понять влияние различных параметров, а иногда и оценить значение X можно на основе рассмотрения механизма переноса теплоты в веществе. Согласно молекулярно-кинетической теории коэффициент теплопроводности в газах зависит в основном от скорости движения молекул, которая в свою очередь возрастает с увеличением температуры  [c.71]

Большинство теплоизоляторов состоит из волокнистой, порошковой или пористой основы, заполненной воздухом. Термическое сопротивление теплоизоля-тора создает воздух, а основа лишь препятствует возникновению естественной конвекции воздуха и переносу теплоты излучением. Сама основа в плотном состоянии обычно обладает достаточно высокой теплопроводностью [>. 1Вт/(м-К)1, поэтому с увеличением плотности набивки минеральной ваты, асбеста или другого теплоизолятора их теплопроводность возрастает. С увеличением температуры коэффициент теплопроводности теплоизоляции также растет из-за увеличения теплопроводности воздуха и усиления теплопереноса излучением.  [c.101]

Чистая медь имеет ряд ценных технических свойств. Высокая пластичность, высокая электро- и теплопроводность, малая окисляемость — все это-обусловило широкое применеиие меди. Кроме того, медь является основой важнейших сплавов — латуней и бронз.  [c.603]

Арзамиты представляют собой химически стойкие самотвер-деющие связующие материалы, применяемые для футеровки химической аппаратуры и строительных конструкций. Они обладают высокой химической стойкостью и механической прочностью и практически непроницаемы для агрессивных жидкостей даже при повышенном давлении. Замазки арзамит одинаково устойчивы к действию кислот и щелочей, что выгодно отличает их от силикатных замазок на основе жидкого стекла. Некоторые сорта этих замазок являются почти единственными теплопроводными вяжущими.  [c.460]

Эти соотношения позволяют найти величину всех трех термоэлектрических эффектов, если известен хотя бы один и если 5 или р, известны в небольшом интервале температур вблизи Т. Применяемые на практике методы определения 5, р и П изложены в работах Бернара [3] и Блатта [12]. При выводе приведенных выше соотношений Томсон полагал, что такие обратимые процессы, как эффекты Пельтье и Томсона, можно рассматривать вне зависимости от происходящих одновременно необратимых явлений теплопроводности и выделения джоулева тепла. Наличие необратимых процессов делает сомнительным применение второго начала термодинамики в обратимой форме, однако Томсон получил правильный результат. Общая теория, рассматривавшая одновременно обратимые и необратимые процессы, была развита в 1931 г. Онсагером [47, 48]. Ее основы изложены Бернаром [3].  [c.271]

В третьей группе представлены металлокерамические сплавы на основе тугоплавких окислов с добавкой металлов (керметы), обладающие высокой жаростойкостью, хотя и отличающиеся от рассмотренных металлокерамическнх сплавов меньшей жаропрочностью. Кроме того, они характеризуются недостаточной теплопроводностью и малой стойкостью к действию тепловых ударов. Наибольшее применение получили композиции из окиси А1 и Сг или Л1 и окиси А1.  [c.230]

Кадмиевые баббиты содержат 90 —97 ц Сб с присадками Си, N1, Ag и других металлов, образующих твердые структурные составляющие в пластичной кадмиево основе. Твердость кадмиевых баббитов НВ 30 — 40, коэффициент линейного расширения 30-10 , теплопроводность 70 — 80 калД.м ч "С).  [c.376]

Привален алгоритм реше1шя обратной граничной задачи теплопроводности для тйл простой Фюрмы на основе решения нехарактеристической задачи Коши, Граничная обратная задача теплопроводности, представляемая системой обыкновенных дифференциальных уравнений, рассматривается в . классе задач оптимального управления. Для построения алгоритма р= иения граничной ОЗТ иыл применен метод синхронного детектирования.  [c.148]

Медь обладает хорошей пластичностью и прочностью, высокими показателями коррозионной стойкости,электро- и теплопроводности и вакуумной плотности. Благодаря этим свойствам медь применяется во многих отраслях промышленности химической, электротехнической, судостроении и др. В технике исполйзуют техническую медь разной степени чистоты Ш, М1, М2, М3, М4 и ее сплавы. Все сплавы на основе меди можно разделить на два типа , латуни (Л) и бронзы (Бр.) Латунь — сплав меди сцинком при содержании цинка более 4%. Применяют латуни простые, легированные только цинком, и специальные атуни, которые кроме цинка содержат и ряд других легирующих компонентов. Бронзы пред-етавляют собой сплавы меди, содержащие не более 5—6% цинка (обычно менее 4%).  [c.136]

В основу этого метода положено частное решение задачи теплопроводности для системы тел, состоящей из ограниченного (исследуемое покрытие) и по-луограниченного (эталонный материал) стержней с граничными условиями первого и четвертого рода.  [c.145]

Подшипники, смазка которых не может быть гарантирована или недопустима по техническим условиям (например, высокие и низкие температуры некоторые агрессивные среды машины, где смазка может вызвать порчу продукции, н т. п.), выполняют из материалов на основе фторопласта-4. Фторопласт-4, как материал для подшипников, обладает уникальным комплексом свойств низкий коэффициент трения (/ 0,5.. . 0,1) широкий диапазон рабочих температур малая набухаемость, высокая химическая стойкость и др. Однако широкому его применению для изготовления подшипников препятствовали низкие нагрузочная способность и теплопроводность. Для повышения нагрузочной способности и теплопроводности создан новый антифрикционный материал — металлофторо-пласт (рис. 3.153), состоящий из стальной основы / и тонкого слоя (0,3.. . 0,4 мм) 2 сферических частиц бронзы, поры между которыми  [c.415]


Неметаллические подшинниковые материалы. Пластические массы — термореактивные типа текстолита и термопластичные, в основном полиамидные, широко используют для изготовления втулок и вкладышей подшипников их физико-механические свойства приведены в табл. 19. Коэффициент теплопроводности пластмасс в 200 раз меньше, чем коэффициент теплопроводности стали, что затрудняет теплоотвод из рабочей зоны подшипника. Для уменьшения нагрева вкладышей следует изготовлять их с малой толщиной стенок или же применять облицовку на металлической основе из тонкого слоя полиамидной смолы.  [c.423]

Экснернментальные работы по теплопроводности при низких температурах широко развернулись после 1945 г. (в частности, в Оксфорде). Была разработана техника измереши , позволившая перекрыть интервал между гелиевыми и водородными температурами. Так, Мендельсон и Розенберг [85, 87] измерили теплопроводности большого числа металлов Берман, Уилкс и др. [5, 39, 41—43, 46] измерили теплопроводности нескольких неметаллов (крупные кристаллы, поликристаллы и стекла). Они подробно проверили основу теории решеточной теплопроводности, включая экспоненциальное изменение теплопроводности при низких температурах, предсказанное Паперл-сом. Так как реальность процессов переброса как при электрон-фононном так и при фонон-фононном взаимодействиях неоднократно подвергалась сомнению, было очень важно получить экспериментальное доказательство их существования.  [c.225]

Берман [38, 39] на основе как своих измерений, так и измерений Бийла [34] пришел к выводу о том, что средний свободный пробег фонона / изменяется примерно как если его вычислять по теплопроводности,  [c.243]

Теплопроводность жидкостей. Теплопроводность жидкостей может быть рассмотрена как на основе кинетической теории газов, видоизмененной для случая больших плотностей и малых пробегов молекул [172], так и на основе теории теплопроводности твердых тел, распространенной на случаи сильного неунорядочения, с учетом возможного добавочного переноса тепла миграцией молекул. Эта вторая точка зрения на теплопроводность жидкостей близка к случаю теплопроводности аморфных твердых тел, рассмотренной в п. 8.  [c.256]

Теплопроводность лития была измерена Бидвеллом [80] до водородных температур. Величина при этих температурах изменяется как Т , а оказалось равным - 0,7, При очень низких температурах электросопротивление изменяется как вместо теоретически ожидаемого Т . Поэтому сравнение и при низких температурах не может быть сделано на основе формулы (15.4), Тем не менее оказывается, что отношение Pj/VFj больше, чем можно предполагать на основе теории. Аномальное поведение лития сильно отличается от поведения натрия, и причина этой аномалии иока не выяснена.  [c.271]

В принципе теплопроводность можно рассчитать на основе (18.5) точно так же, как она получалась из соотношения (13.7) в п. 13. Практически проводимость была получена из соотношения (18.4) только в случае сферической симметрии, когда однозонная структура не дает изменения электрического и теплового сопротивлений, а приводит только к эффекту Холла. В обшем случае можно показать, что гальвано-магнитный эффект равен нулю, если все состояния на поверхности Ферми имеют одинаковое время релаксации. Следовательно, нужно использовать более сложную зонную модель. Единственным случаем, для которого был получен гальвано-магнитный эффект, является случай двух перекрывающихся зон, каждая из которых сферически симметр гана.  [c.277]

Решеточная теплопроводность. Решеточная компонента теплопро-водиости металлов и сплавов может быть описана на основе теории теплопроводности неметаллов, по с рассеянием фононов электронами, даваемыми формулой (19.3). Это рассеяние действует как дополнительный процесс, вызывающий сопротивление. Так как сопротивление We вслед-  [c.281]

Разработанная в разделе физико-математическая модель термогазодинамического процесса энергоразделения в многокомпонентной среде, пульсационно истекающей в полузамкнутую емкость с теплопроводными стенками, является основой для расчета основных конструктивных и технологических параметров различных типов пульсационных термотрансформаторов, предназначенных для охлаждения многокомпонентных углеводородных газов. Одна из таких конструкций [31, 32] представлена на рис. 9.24.  [c.253]

Дифференциальное уравнение теплоотдачи выводится на основе анализа явления теплообмена в месте соприкосновения теплоноси-геля со стенкой. Тепловой поток через элементарную площадку поверхности твердой стенки dF можно выразить по закону Фурье через температурный градиент в пристеночном слое жидкости и коэффициент теплопроводности жидкости X  [c.260]

При ламинарном течении теплота передается теплопроводностыО. На основе закона теплопроводности легко найти  [c.356]

Кроме методов этих двух групп разработаны и применяются-множество других методов измерения тепловых потоков, базирующихся на разнообоазных физических явлениях и эффектах. Это, например, методы, основанные на фотоэлектрических и радиометрических эффектах, оптический способ, где конвективный тепловой поток определяется по углу отклонения луча, пропорциональному градиенту температуры в ламинарном подслое, а также методы, основанные на решении обратной задачи теплопроводности. Последние используются в современной теплоэнергетике пока что меньше, чем энтальпийные методы и методы, основанные на решении прямой задачи теплопроводности. Исключение составляют методы, основанные на решении обратной задачи теплопроводности, совершенствование которых при наличии быстродействующих вычислительных машин с большой памятью создало им хорошую основу для практического использования.  [c.272]


Смотреть страницы где упоминается термин Основы теплопроводности : [c.125]    [c.11]    [c.58]    [c.329]    [c.255]    [c.102]    [c.379]    [c.128]    [c.148]    [c.247]    [c.254]    [c.255]   
Смотреть главы в:

Гидравлические и пневматические системы  -> Основы теплопроводности



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте