Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплопроводность аморфных тел

В аморфных диэлектриках в широком диапазоне температур длина свободного пробега фононов ограничена рассеянием на дефектах структуры. Теплопроводность аморфных тел значительно меньше, чем теплопроводность кристаллов. Поликристаллические тела обладают промежуточной теплопроводностью между теплопроводностями монокристаллов и аморфных тел.  [c.339]

Специфика структуры аморфных тел оставляет проблематичным вопрос о применимости к ним фононной теории теплопереноса. Вместе с тем при отсутствии надежных модельных схем для аморфных тел имеет место удовлетворительное согласование положений фононной теории теплопереноса с экспериментальными данными, что позволяет основываться на представлениях, вытекающих из этой теории. За счет неупорядоченности структуры аморфные тела имеют ограниченную длину свободного пробега и вследствие этого значительное рассеяние фононов. Отсюда абсолютное значение теплопроводности аморфных тел значительно меньше, чем у кристаллических.  [c.30]


Хотя экспериментальные данные в общем подтверждают изложенные выше соображения, однако для некоторых сплавов заметна тенденция к увеличению Яф с ростом температуры. Этот факт нуждается в подтверждении, но он может быть объяснен тем, что в сталях и сплавах (особенно высоколегированных) дальний порядок расположения атомов может быть серьезно нарушен, т. е. в какой-то мере структура сплава становится подобна аморфной. В то же время известно, что теплопроводность аморфных тел (степень дальнего порядка расположения ато-  [c.118]

Киттель [И8 отметил, что теплопроводности аморфных тел различаются-значительно меньше, чем теплопроводности кристаллов, поэтому прозрачное кварцевое стекло и найлон предлагали использовать в качестве эталонов теплопроводности, поскольку ее значения для разных образцов отличаются очень мало.  [c.155]

Теплопроводность тел независимо от их химического состава существенно зависит от их физического состояния. Коэффициент теплопроводности может меняться в широких пределах в зависимости от того, находится ли тело в аморфном (стекловидном) состоянии или представляет собой монокристалл. Поликристаллические тела обладают промежуточной теплопроводностью между теплопроводностями монокристалла и аморфного тела. Их теплопроводность тем ближе к теплопроводности аморфного тела, чем меньше размеры кристаллов.  [c.256]

Специфика структуры аморфного тела позволяет предполагать, что длина свободного пробега близка к межатомным расстояниям и практически не зависит от температуры. Экспериментально установлено, что с повышением температуры плотность аморфного тела уменьшается, скорость звука и удельная теплоемкость возрастают, причем удельная теплоемкость растет особенно интенсивно. Таким образом, согласно фононной теории теплопереноса см. формулу (1-29)] теплопроводность аморфного твердого тела при повышении температуры должна возрастать, что экспериментально подтверждается результатами работ [Л. 20, 21]. Реальным неметаллическим твердым телам присуще чередование областей с ближним и дальним порядком в расположении структурных элементов. Теплопроводность таких систем определяется соотношением аморфных и кристаллических структурных элементов. Установлено, что в случае преобразования кристаллической компоненты в диапазоне средних температур теплопроводность уменьшается с повышением температуры, и наоборот. При определенном соотношении компонент температурная зависимость теплопроводности носит постоянный характер в довольно широком диапазоне температур.  [c.30]


Данная монография посвящена описанию процессов теплопроводности в твердых телах. В ней на основе богатейшего экспериментального материала проанализированы особенности распространения теплового потока в различных типах твердых тел (в металлах, аморфных телах, полупроводниках и т. д.). Подробно рассматриваются все механизмы теплопроводности и дается физический анализ каждого из них.  [c.4]

Процессы переноса энергии играют фундаментальную роль в физике твердого тела. Именно поэтому трудно себе представить монографию, посвященную описанию свойств твердых тел, в которой в той или иной степени не обсуждалась бы проблема теплопроводности. Однако изложение это носит обычно ограниченный характер, связанный с общей тематикой книги, т. е. либо рассказывается только о теплопроводности металлов, либо обсуждается теория теплопроводности и не обсуждаются экспериментальные данные и т. д. В настоящее время накопился обширный теоретический и экспериментальный материал, и поэтому существует необходимость в создании обобщающих монографий, которые ли бы целиком посвящены рассмотрению процессов переноса энергии в различных типах твердых тел (металлах, аморфных телах, полупроводниках, сверхпроводниках и т. д.) и в которых с единой точки зрения был бы описан и проанализирован имеющийся теоретический и экспериментальный материал. Предлагаемая книга Р. Бермана в значительной мере служит этой цели. Автор монографии в течение многих лет занимается изучением процессов теплопроводности в различных типах твердых тел. Известен целый ряд его интересных исследований в этой области.  [c.5]

Аддитивность теплового сопротивления 61 Аморфные тела 155 — — аномалия теплопроводности 164, 165  [c.281]

Физические и механические свойства кристаллов изменяются в зависимости от направления измерения. Однако беспорядочное расположение металлических зерен (кристаллитов) создает картину макроскопической однородности и изотропности материала. Различными методами механического и теплового воздействия кристаллиты можно определенным образом ориентировать и создавать соответствующую упорядоченную ориентацию или текстуру. В этом случае говорят об анизотропии материала, которая проявляется в его упругих и пластических свойствах, твердости, теплопроводности, электросопротивлении, магнитной проницаемости и т. д. Такой вид анизотропии можно устранить только тщательной термической обработкой. Аморфные тела имеют одинаковые свойства во всех направлениях, т. е. изотропны.  [c.155]

Рассмотрим теплопроводность в диэлектриках, находящихся в твердом состоянии. В качестве модели для этих материалов используем модель сжатого неупорядоченного или упорядоченного газа, что соответствует аморфному или кристаллическому строению твердого тела. Для большинства диэлектриков отношение сг/Л примерно на порядок больше единицы [Л. 1171, которой можно в первом приближении пренебречь, если взять за основу формулу (5-56). Тогда с точностью до численных коэффициентов теплопроводность твердого диэлектрика можно представить выражением  [c.183]

Особенности строения кристаллических тел. Геометрическая правильность в расположении атомов в кристаллических телах придает их свойствам некоторые особенности, отличающие их от свойств тел некристаллических, или аморфных. Первой такой особенностью, как указывалось выше, является анизотропность свойств, или векториальность, под которой понимается неодинаковость свойств в разных направлениях. Если взять один крупный кристалл металла (монокристалл), вырезать из него образцы в разных направлениях к оси кристалла и испытать их свойства (механические и физические), то можно получить подтверждение анизотропности. Так, например, такие опыты, производившиеся над образцами, вырезанными из монокристалла меди, показали, что предел прочности в разных направлениях колеблется от 14 до 35 кГ/мм , относительное удлинение 8 — от 10 до 55% большие колебания замечены по теплопроводности и электропроводности. Анизотропность — неизбежное следствие правильности расположения атомов в решетке, она имеет большое значение в технике.  [c.37]

Теплопроводность жидкостей. Теплопроводность жидкостей может быть рассмотрена как на основе кинетической теории газов, видоизмененной для случая больших плотностей и малых пробегов молекул [172], так и на основе теории теплопроводности твердых тел, распространенной на случаи сильного неунорядочения, с учетом возможного добавочного переноса тепла миграцией молекул. Эта вторая точка зрения на теплопроводность жидкостей близка к случаю теплопроводности аморфных твердых тел, рассмотренной в п. 8.  [c.256]


Возобновившийся интерес к изучению колебательных свойств аморфных тел частично связан с их аномальным поведением при очень низких температурах. Теплоемкость таких веществ меняется не по обычному закону Г , и теплопроводность не следует линейному закону, который по предположению соответствует изменению теплоемкости по закону Обзор последних теоретических и экспериментальных работ в этой области дал Бётгер [37].  [c.155]

Колебательные спектры таких неупорядоченных систем как стекла и аморфные тела суш ественно отличаются от спектров обычных кристаллов. Плотность колебательных состояний кристаллов в низкоэнергетической области хоропю описывается де-баевским законом (3.20). В отличие от кристаллов в спектрах стекол и аморфных веш еств при энергиях меньгпе 1 К наблюдается постоянная плотность колебательных состояний, а в области энергий 2-10 мэВ (> 15 К) имеется избыточная (по сравнению с дебаевской) плотность колебательных состояний. Эта избыточная плотность состояний наблюдается во всех стеклах и проявляется в низкоэнергетических спектрах неупругого рассеяния нейтронов, низкочастотных спектрах комбинационного рассеяния света (КРС), в спектрах инфракрасного поглош ения, в низкотемпературной теплоемкости и теплопроводности. Согласно модельным представлениям [12-16] колебательные возбуждения, ответственные за избыточную плотность состояний в неупорядоченных телах, локализованы в области, содержаш ей от нескольких десятков до сотни атомов и имеюш ей размер от одного до нескольких нанометров. Таким образом, низкоэнер-  [c.183]

Если твердое тело было бы идеально упругим и однородным, то никаких потеэь при распространении в нем упругих волн не было бы. Однако реальные тела никогда не бывают идеально упругими и однородными и при распространении в них упругих волн, часть энергии этих волн так или иначе превращается в тепло или рассеивается. Имеется ряд общих механизмов таких превращений, которые в конечном счете имеют своей причиной два диссипативных процесса — потери на внутреннее трение и потери на теплопроводность. Твердые тела, как мы знаем, отличаются своим многообразием. Имеются аморфные твердые тела, более или менее одно-  [c.475]

Широкое распространение применительно к полимерным системам получила фононная теория теплоперенога Л. 35—38]. В ряде работ ТЛ. 39, 40] экспериментально установлена согласованность температурной зависимости теплопроводности полимеров с основными положениями фононной теории теплопереноса. С другой стороны, результаты экспериментов при низких температурах Л. 41], а также теоретический расчет теплофизичеоких параметров по скорости распространения упругих волн в растворах и твердых телах [Л. 42] не подтверждают правомерность применения фононной теории теплопр-реноса для таких сложных веществ, как полимеры. Альтернативный характер носят и другие положения фононной теории теплопереноса применительно к полимерным системам. Так, если руководствоваться результатами работы (Л. 43], то длина свободного пробега фононов в широком интервале температур для аморфных полимеров равняется среднему межатомному расстоянию и не зависит от температуры. Однако из приведенного выше обзора по физико-химическим свойствам полимеров видно, что за счет гибкости макромолекул (Л. 22] плотность упаковки структурных элементов полимера может претерпеть существенные изменения. Таким образом, специфика структуры полимерных систем накладывает неопределенность на понятие длины  [c.32]

В настоящее время установлено, что теплопроводность полимеров в общем меньше теплопроводности низкомолекулярных твердых тел. Абсолютная величина теплофизических характеристик у аморфных полимеров всегда ниже, чем у кристаллических. Природу этого явления объясняют [Л. 26] тем, что у кристаллических полимеров, как структур с дальним порядком, механизм передачи колебаний более упорядочен и интенсивен по сравнению с неупорядоченной системой связи макромолекул аморфных полимеров. В то же время в области низких температур порядка 10— 100 К теплоемкость аморфных и кристаллических полимеров с одной и той же химической природой практически одинакова [Л. 41]. Такой температурный характер теплоемкости объясняется тем, что в указанной области температур колебательные движения цепей имеют одинаковую амплитуду в кристаллическом и аморфном состоянии. Инертность воздействия неупорядоченности структуры на процесс теплопереноса в области низких температур характерна и для низкомолекулярных соединений [Л. 35]. При повышении температуры возникают ангармоничные колебания значительной амплитуды с участием самых крупных структурных образований, которые имеют различную природу для аморфных и кристаллических полимеров. Температурная зависимость теплофизических характеристик аморфных полимеров в большинстве случаев носит немонотонный характер с экстремальной точкой в области температуры стеклования 1[Л. 44].  [c.33]

Заключение. Концепция Ф. (как и др. квазичастиц) помогает описать мн. свойства твёрдых тел, используя представления кинетич. теории газов. Так, решеточная тепло-проводностъ кристаллов для неметаллов — это теплопроводность газа Ф., длина свободного пробега к-рых ограничена фонон-фононным взаимодействием, а также дефектами кристаллич. решётки при низких темп-рах (границами образца). Поглощение звука в кристаллич. диэлектриках—результат взаимодействия звуковой волны с тепловыми Ф. В аморфных (в т. ч. стеклообразных) телах Ф. удаётся ввести только для длинноволновых акустич. колебаний, мало чувствительных к взаимному расположению атомов и допускающих континуальное описание твёрдого тела (см. Упругости теория).  [c.339]


Результаты, полученные при измерениях в области температур вплоть до 1 или 2 К, позволяли предположить, что теплопроводность ряда аморфных твердых тел изменяется с температурой, как Т, в соответствии с теорией Клеменса. Однако некоторые результаты указывали на более быструю температурную зависимость, что было подтверждено измерениями при температурах ниже 0,1 К на многих некристаллических твердых телах (см., например, работу Стефенса [225]) эти измерения показали, что теплопроводность в действительности меняется только несколько медленнее Т . Были проведены также измерения теплоемкости при столь низких температурах, и была найдена упомянутая выше аномалия той же природы для всех исследованных аморфных твердых тел. При этом не только теплоемкость С ка оказалась большей ожидаемой из теории Дебая, в которой использовались измеренные значения упругих постоянных, но и ее изменения с температурой были намного медленнее,  [c.164]


Смотреть страницы где упоминается термин Теплопроводность аморфных тел : [c.156]    [c.347]    [c.243]   
Физика низких температур (1956) -- [ c.243 ]



ПОИСК



Аморфное юло

Аморфные тела аномалия теплопроводности



© 2025 Mash-xxl.info Реклама на сайте