Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Никелевые сварных соединений

Трудность другого характера — склонность металла швов к образованию пор в процессе кристаллизации. По мнению большинства исследователей, к основным причинам повышенной склонности никелевых сварных соединений к образованию пор относятся интенсивное насыщение расплавленного металла газами в условиях нагрева и последующее скачкообразное изменение растворимости газов в никеле при переходе его из жидкого состояния в твердое.  [c.498]


Медно-железные электроды состоят из медного прутка с оплеткой из жести или пучка из медных и стальных стержней. Электроды имеют специальное или стабилизирующее покрытие. Медно-никелевые электроды состоят из стержней монель-металла (70 % Ni, 28 % Си и остальное Fe) пли мельхиора (80 % Си, 20 % Ni) со стабилизирующей обмазкой. Применение медно-железных и медноникелевых электродов позволяет получить сварное соединение, у которого отбеливание в з. т. в. наблюдается только на отдельных участках. Наибольшее применение имеют медно-железные электроды, как более дешевые и обеспечивающие достаточную прочность металла шва.  [c.234]

Рассмотрены вопросы механики разрушения конструкционных материалов при низких температурах. Описаны результаты исследования механических свойств, чувствительности к надрезу, характеристик разрушения ряда алюминиевых, титановых, никелевых сплавов и сталей, а также некоторых композиционных материалов при низких температурах, вплоть до температуры жидкого гелия (4 К). Дана оценка свойств сварных соединений ряда сплавов при низких температурах.  [c.4]

В течение многих лет при изготовлении емкостей для жидких газов используют никелевые стали. Интерес к этим материалам повысился вновь в связи с их применением в газгольдерах и баках для ожиженного природного газа. Это потребовало разработки сталей, не только имеюш их повышенные свойства в деталях больших сечений (такие детали ранее не находили широкого применения), но и обладающих в сварных соединениях массивных деталей такими же характеристиками, как и основной материал. В таких случаях используют также и аустенитные стали. Однако вследствие более низкого предела текучести и боль-и ей стоимости они находят ограниченное применение в специальных конструкциях, где требуется минимальная толщина стенки. Вследствие небольшого удельного веса и высокой коррозионной стойкости алюминиевые сплавы привлекают внимание специалистов как материалы для криогенной техники.  [c.46]

Сталь обладает ограниченной стойкостью против окисления (не выше 700— 750° С). Применение никелевого электролитического покрытия порядка 0,05 мм. обеспечивает надежную работу в эксплуатации при температурах порядка 800° С. Сталь удовлетворительно сваривается, когда имеет мелкозернистую однородную структуру, сварные соединения выдерживают высокие нагрузки.  [c.165]


Уплотнение главного разъема между выемной частью и корпусом выполнено круглой прокладкой 14 из никелевой проволоки. Соединение патрубков бака с трубопроводами установки сварное.  [c.153]

В настоящее время большое значение приобретает сварка жаропрочных сталей и сплавов с конструкционными применительно к турбокомпрессорам дизельных двигателей. Проведены исследования соединений, выполненных сваркой трением, из следующих сочетаний материалов жаропрочная сталь ЭИ 572 со сталью 40Г для турбин, работающих при температуре до 700°, и жаропрочные сплавы иа никелевой основе ЭН 857 и АНВ-300 со сталью 40Х для турбин, работающих при температуре до 900 °С. Разработана технология сварки и термической обработки. Испытания на усталостную прочность и производственные испытания показали, что сварные соединения из указанных материалов имеют высокие прочностные показатели [11].  [c.190]

Медно-никелевые электроды (монель МНЧ-2) состоят из 27—30 % меди и 66—68 % никеля [14]. Монель имеет температуру плавления 1260—1340 °С, что соответствует температуре плавления чугуна, и благодаря никелю хорошо сплавляется с чугуном. Однако этот сплав дает значительную усадку, что приводит к появлению высоких внутренних напряжений, способствующих образованию трещин. Поэтому монель наплавляют короткими валиками длиной 40—50 мм и сразу же после этого проковывают шов молотком. Прочность сварного соединения в этом случае не превышает 100 МПа.  [c.117]

Конструктивные элементы и размеры сварных соединений из сталей, сплавов на железоникелевой и никелевой основах, выполняемых ручной дуговой сваркой, приведены в табл. 18.  [c.29]

Возможна сварка чугунных деталей без предварительного нагрева (холодная сварка). Сварку ведут электродами из цветных металлов на медной основе. Медь не образует химических соединений с углеродом и нерастворима в железе, и шов получается неоднородным. Медно-железные электроды различной конструкции применяют чаще для заварки трещин, при сварке разбитых деталей с обеспечением хорошей прочности 18...25 кгс/мм (180...250 МПа). Электроды со стержнем из никелевого сплава используют в тех случаях, когда необходимо обеспечить хорошую обрабатываемость сварного соединения. Однако такие швы весьма склонны к усадке. И поэтому сварку необходимо вести при минимальном токе и малом проплавлении металла, при небольшой длине валиков с обязательной проковкой.  [c.129]

Сварка металлов. Терминология Сварка под флюсом. Соединения сварные. Типы, размеры Сварка под флюсом. Автоматическая и полуавтоматическая дуговая. Соединения сварные под острыми и тупыми углами Сварка ручная дуговая. Соединения сварные под острыми и тупыми углами Сварка. Обозначения основных положений сварки плавлением Сварные соединения и швы. Электрошлако-вая сварка. Типы и конструктивные элементы Соединения сварные, выполняемые контактной электросваркой. Типы и конструктивные элементы Сварка дуговая. Соединения сварные трубопроводов из меди и медно-никелевого сплава. Типы, конструктивные элементы и размеры Сварка металлов. Классификация Свинец  [c.298]

Сварку электродами со стержнем сплава на никелевой и медноникелевой основе (марки МНЧ-2, ОЗЧ-4 и др.) используют для устранения мелких дефектов, как правило, в случаях, когда требуется обработка поверхности сварного соединения. При выполнении особо ответственных работ применяют электроды со стрежнем, содержащим более 90 % никеля (например, ОЗЧ-З, ОЗЧ-4).  [c.359]

Сосуды, работающие под давлением, в большинстве случаев имеют цилиндрическую форму. Они могут изготавливаться как из сталей различных классов (низкоуглеродистые, низколегированные, аустенитные, теплоустойчивые и т.д.), так и из сплавов (алюминиевые, медные, титановые и никелевые). В таких сосудах применяют, как правило, стыковые соединения. Нахлесточные и тавровые соединения могут быть использованы только в местах крепления сосуда к фундаментному основанию. В зависимости от толщины стенки и назначения объекта предусмотрены односторонние и двусторонние сварные соединения с остающимися подкладками или без них.  [c.367]


ГОСТ 5264-80 "Р ная дуговая сварка. Соединения сварные" устанавливает основные типы, конструктивные элементы и размеры сварных соединений из сталей, а также сплавов на железоникелевой и никелевой основах, выполняемых ручной дуговой сваркой покрытыми электродами толщиной от 1 до 175 мм во всех пространственных положениях. Стандарт не распространяется на сварные соединения стальных трубопроводов.  [c.18]

ГОСТ 16038-80 "Швы сварных соединений трубопроводов из меди и медно-никелевого сплава" определяет форму и размеры разделки кромок и сварного шва при механизированной сварке.  [c.20]

Отсутствие насыщения расплавленного и нагретого металла газами. Наоборот, в целом ряде случаев наблюдается дегазация металла шва и повышение его пластических свойств. В результате достигается высокое качество сварных соединений на химически активных металлах и сплавах, таких как ниобий, цирконий, титан, молибден и др. Хорошее качество электронно-лучевой сварки достигается также на низкоуглеродистых, коррозионно-стойких сталях, меди и медных, никелевых, алюминиевых сплавах.  [c.148]

Ввиду различия химического состава и структуры металла шва и основного металла сварные соединения некоторых никелевых сплавов особенно с Сг и Мо имеют существенную неоднородность физикохимических свойств и проявляют склонность к межкристаллитной коррозии. Для таких сплавов рекомендована послесварочная термическая обработка (нагрев до Т = 700. .. 800 °С с последующим охлаждением на воздухе или в воде).  [c.464]

Газовую сварку используют ограниченно для получения соединений на никеле и медно-никелевых сплавах. При ацетиленокислородной сварке устанавливается нормальное пламя, так как избыток кислорода или избыток ацетилена вызывают пористость, хрупкость металла шва. Для сварки никеля используют присадочную проволоку того же химического состава, что и основной металл, или с легированием небольшим количеством марганца, магния, кремния и титана. Чистый никель можно сваривать без флюса, а сплавы - с флюсом, не содержащим бор. Показатели механических свойств сварных соединений из никеля, полученных газовой сваркой, существенно ниже показателей основного металла.  [c.467]

Приведены основные данные по жаропрочности сварных соединений конструкционных и теплоустойчивых сталей, аустенитных сталей, сплавов на никелевой основе, а также разнородных сталей, используемых в энергетике, нефтяном и химическом машиностроении.  [c.2]

СВАРНЫЕ СОЕДИНЕНИЯ ЖАРОПРОЧНЫХ СПЛАВОВ НА НИКЕЛЕВОЙ ОСНОВЕ  [c.239]

ГОСТ 16038—70 Швы сварных соединений трубопроводов из меди и медно-никелевого сплава регламептируе формуй размеры подготовки кромок и выполненных сварных швов при механизированной сварке в защитных газах труб из меди и се сплавов.  [c.12]

Сварной материал. При комнатной температуре прочность сварных соединений исследованных сталей превышает 665 МПа. Установлена существенная разница в поведении двух типов сталей при 298 К. Так, сварные образцы никелевых сталей разрушались по основному металлу, а при низких температурах— по сварному шву, что типично для сварных соединений никелевых сталей, изготовленных с присадкой проволоки сплава In onel. В сварных соединениях нержавеющей стали, наоборот, при 298 К разрушение происходит по шву, а в интервале температур 113—77 К— по основному материалу.  [c.207]

Существенное преимущество никеля и его сплавов — иммунитет его к коррозионному растрескиванию в растворе хлоридов. Более устойчивы, чем чистый никель и его сплавы К — монель (с концентрацией 66% никеля, 30% меди, до 3,5% алюминия, 1,5% железа), X — инконель (с концентрацией 73% никеля, 15% хрома, 3,5% титана, 1,0% ниобия), G — иллий (с концентрацией 56% никеля, 22,5% хрома, 6,5% железа, 6,5% меди, 1,25% марганца, 6,4% молибдена), хлоримет 2 (63% никеля, 3% хрома, 32% молибдена). В деаэрированном паре при температуре 400° С сплавы никеля достаточно устойчивы. В паре при температуре 500° С инконель корродирует со значительной скоростью [111,247]. В воде при температуре 316° С он межкристаллитной коррозии не подвержен. При деаэрации скорость коррозии снижается. Увеличение pH воды до 9,5 приводит к снижению скорости коррозии отожженной инко-нели. Стабилизирующий отжиг лишь в малой степени уменьшает ее. Сварные соединения инконели и аустенитной нержавеющей стали стойки в деаэрированной воде при температурах до 300° С [111,248]. При температуре 650° С коррозия никелевых сплавов по преимуществу межкристаллитная. Отмечается также обезуглероживание сплавов. При температуре 680° С достаточно стоек хастелой.  [c.227]

Одной из основных причин снижения эксплуатационной надежности разнородных сварных соединений является хрупкое разрушение в зоне сплавления. Для предупреждения этого явления рекомендуется применять сварочные материалы с повышенным запасом аустенитности, лучше всего электроды на никелевой основе. Образование и развитие в зоне сплавления переходных прослоек, появляюш,ихся в результате диффузии углерода из малолегированного основного металла в аустенитный шов при сварке, термообработке и эксплуатации конструкции в условиях высоких температур, также может способствовать снижению прочности разнородных соединений. Переходные прослойки в виде обезуглероженной зоны крупных зерен феррита со стороны малолегированного металла и высокотвердой прослойки со стороны аустенитного шва образуются, начиная с температуры 420— 450° С и наибольшей толщины достигают во время выдержки при температуре 800—850° С.  [c.151]

При ручной дуговой сварке переходные прослойки не образуются из-за кратковременного воздействия высокой температуры. В противоположность этому в сварных соединениях, выполненных электрошлаковой или автоматической сваркой под слоем флюса, получают большое развитие диффузионные процессы. Для предупреждения диффузии углерода рекомендуется сваривать разнородные соединения электродами с повышенным содержанием никеля (например, сталь типа Х16Н26М6) или никелевыми электродами.  [c.151]


В условиях работы при постоянной температуре композиция аустенитнога металла шва (на железной или никелевой основе) не оказывает влияния на характер разрушения разнородных сварных соединений. В то же время испытания последних при циклически изменяющихся температурах показывают преимущества электродов на никелевой основе с точки зрения уменьшения вероятности хрупких разрушений в зоне сплавления. Поэтому для сварных соединений из разнородных сталей, имеющих в процессе эксплуатации большое количество пусков и остановок и работающих при температуре выше 400—550°, наиболее целесообразным является применение аустенитных электродов на никелевой основе.  [c.50]

Сварка используется для соединения элементов конструкций, имеющих самую различную толщину. При сварке тонких сечений материала мало, и если он имеет склонность к возникновению остаточных напряжений, то наблюдающиеся дефекты являются в основном дефектами сварки при сварке толстых сечений наиболее серьезными дефектами являются трещины которые непосредственно вызываются напряжением, возникающим при объемных изменениях, в частности, в зоне термического влияния. В предельном случае сварки за один проход соединение можно получить без использования присадочного металла. В последнее время максимальное сечение, которое могло быть сварено газовой сваркой, было значительно увеличено в результате разработки и внедрения электронно-лучевой сварки, которая позволяет получить локальную зону проплавления глубиной порядка нескольких сантиметров. При соответствующем материале и отсутствии газовыделения электронно-лучевая сварка является прогрессивным процессом, однако для ее осуществления необходимо либо иметь сварочную камеру, которую можно было бы вакууми-ровать, либо обеспечить вакуум в точке сварки. Хотя, в принципе желательно, чтобы сварное соединение обладало такими же свойствами, как основной металл, на практике это не всегда возможно, и поэтому во многих случаях используют сварку с присадочным металлом, который менее склонен к образованию трещин. Примерами применяемых при сварке присадочных металлов, которые отличаются по составу от основного металла, являются сталь с 2,25% Сг и 1% Мо для сварки 0,5% Сг, Мо, V сталей сталь с контролируемым содержанпем феррита для сварки аусте-нитных сталей и специальные электроды типа In o А для никелевых сплавов. Много попыток было сделано, чтобы разработать электроды для 0,5% Сг, Мо, V сталей, однако наплавленный металл этого состава имел очень низкую пластичность и, кроме того, приобретал высокое сопротивление деформации при выпадении карбида ванадия, повышающего склонность к образованию  [c.72]

Стыковое сварное соединение цилиндра с цилиндром наиболее важно для труб парогенератора. Возникающие при этом дефекты представляют серьезную проблему из-за большого числа сварных швов в парогенераторе. Основными из них являются непровар, пористость и воздушные пузыри (рис. 7.5) [6]. Большинство обычно используемых материалов не подвержено трещинообразо-ванию, однако трещины могут возникнуть при сварке мартенсит-ных и стареющих аустенитных сталей. Некоторые стали, относительно редко применяемые в парогенераторах, особенно чувствительны к трещинам. В частности, образование трещин в зоне термического влияния очень трудно предотвратить в мартенсит-ной стали с 12% Сг, потому что объемные изменения связаны с мартенситным переходом. Никелевые стали также склонны к трещинообразованию как в сварном шве, так и в зоне термического влияния. Трещинобразование в сталях с 12% Сг можно предотвратить, используя их предварительный нагрев, а в никелевых сплавах — используя специальный присадочный металл, например проволоку 1псо А , и в обоих случаях можно свести к минимуму при ограничении тепловой мощности дуги и использовании высококачественных проволочных электродов или при применении пульсирующей дуги. Очень серьезная проблема при сварке труб парогенератора связана с наплавом, получающимся на внутренней стороне трубок. Обычно его пытаются удалить при протяжке, но этот способ не очень эффективен, особенно когда сварной шов находится в центральной части длинной трубы. Первоначально многие сварные узлы такого рода получали контактной стыковой сваркой, причем в критический момент в трубу под давлением подавали инертный газ, чтобы предотвратить натек металла внутрь. К сожалению, уловить четкую грань между образованием наплава и полным требуемым проплавлением в этом случае очень трудно, так как даже случайные колебания элект-  [c.75]

Сварка магистральных трубопроводов других отраслей промышленности выполняется в основном по аналогичной сварочной технологии, применяемой в энергомашиностроении и строительстве газопроводов, с учетом особенностей производства, свариваемых сталей, требований к условиям эксплуатации сварных соединений, видов и способов сварки и др. Офаничено, в отдельных случаях полностью исключено, применение аустенитных сварочных материалов на железоникелевой или никелевой основах для выполнения сварных соединений трубопроводов из низколегированных и среднелегированных сталей перлитного и мартенситного классов с целью отмены послесварочной термической обработки (в отраслях нефтехимии, нефтеперерабатывающей и др.).  [c.275]

При сварке электродами типа Э42 и Э42А, а также электродами марки ЦЧ-4 и ЦЧ-4А или электродами со стержнем из сплава на никелевой основе (марки ОЗЧ-З, ОЗЧ-4, ОЗЛ-25Б и др. ) применяют вариант выполнения швов с постановкой стальных ввертышей-шпилек (рис. 5.8), что обеспечивает равнопрочность сварного соединения с чугуном. Разделка кромок является не обязательной при толщине ремонтируемой детали до 20 мм, при большей толщине стенки необходима V-образная разделка с углом раскрытия 90... 120 °. Диаметр шпилек составляет 6 10 и 16 мм при толщине стенки детали до 10, до 20 и более 20 мм.  [c.363]

ГОСТ 8713-79 "Сварка под флюсом. Соединения сварные" распространяется на соединения из сталей, а также сплавов на железоникелевой и никелевой основах, выполняемых сваркой под флюсом, и устанавливает основные типы, конструктивные элементы и размеры сварных соединений. Стандарт распространяется на автоматическую и механизированную сварку под флюсом на весу, на флюсовой, флюсомедной и остающейся подкладках, на медном ползуне и на подварочном шве стыковых, нахлесточ-ных, угловых и тавровых соединений толщиной от 1,5 до 160 мм.  [c.18]

ГОСТ 14771-76 "Дуговая сварка в защитном газе. Соединения сварные" устанавливает основные типы, конструктивные элементы и размеры сварных соединений из стали, а также сплавов на железоникелевой и никелевой основах, выполняемых дуговой сваркой плавящимся электродом в углекислом газе и его смесях с кислородом, в инертных газах и их смесях с углекислым газом и кислородом, а также неплавя-щимся электродом в инертных газах с присадочным и без присадочного металла.  [c.19]

В связи с этим сварочные материалы, предназначенные для жаропрочных перлитных сталей, должны обеспечивать химический состав металла шва, близкий к химическому составу основного металла. Если невозможен подогрев и термическая обработка (отпуск) сварных соединений, могут быть использованы сварочные материалы, обеспечивающие получение металла шва на никелевой основе (Св-08Н60Г8М7), поскольку диффузионная подвижность элементов в аустените при 450. .. 600 °С значительно меньше, чем в сталях перлитного класса.  [c.320]


Э-09Х1МФ. Когда применение подофева свариваемых изделий и последующей термической обработки сварных соединений невозможно или необходима сварка перлитных жаропрочных сталей с аустенитными, допускается использование электродов на никелевой основе.  [c.323]

При сварке этими электродами массивных деталей, для получения бездефектных сварных соединений, приходится их подофевать до температур 400 °С. Для улучшения обрабатываемости и некоторого повышения пластичности металла шва используют электроды из никелевых чугунов, например нирезиста или никросилаля (табл. 11.4).  [c.418]

Сварку ведут короткой дугой с возвратно-поступательным движением электродов без поперечных колебаний. Удлинение дуги ухудшает формирование шва, увеличивает разбрызгивание, снижает механические свойства сварного соединения. Предварительный подофев делают при толщине 5. .. 8 мм до 200. .. 300 °С, а при толщине 24 мм - до 800 °С. Теплопроводность и электропроводность металла шва резко снижаются при сохранении высоких механических свойств. Для сварки латуней, бронз и медно-никелевых сплавов применяют электроды ММЗ-2, Бр1/ЛИВТ, ЦБ-1, МН-4 и др.  [c.459]

Возможность значительного снижения длительной пластичности участков околошовной зоны и шва может приводить, как будет показано ниже, к снижению работоспособности сварных соединений за счет развития хрупких разрушений. Наиболее надежным путем уменьшения степени повреждения границ в процессе сварки является переход к использованию в высокотемпературных конструкциях материала повышенной чистоты по вредным примесям за счет использования более совершенной металлургической технологии. Данное требование относится прежде всего к высокопожаропрочным аустенитным сталям и сплавам на никелевой основе, степень повреждения границ у которых при сварке наибольшая. Для теплоустойчивых сталей перлитного и бейнит-ного классов особое внимание должно быть обращено на повышение чистоты по сере и фосфору.  [c.42]

Сварные соединения неупрочняемых аустенитных сталей (например, стали Х18Н10Т) по данным замера твердости в достаточной степени однородны. Сварные же соединения высокожароирочных аустенитных сталей и сплавов на никелевой основе в исходном состоянии после сварки имеют явно выраженную меньшую твердость в участке зоны термического влияния, нагреваемом в интервале температур Т тав— пл- Проведение последующей термической обработки обычно восстанавливает твердость этого участка до уровня основного металла.  [c.57]

Совершенно иным является развитие процесса при термической обработке сварного соединения, склонного к растрескиванию. Для металла околошовной зоны в данном случае (рис. 61, б) характерна в условиях ползучести повышенная склонность к меж-зеренному разрушению. Поэтому кривая длительной прочности 1 будет иметь больший наклон, чем аналогичная кривая на рис. 61, а, и пересечение ее с кривой релаксации 3 произойдет сравнительно быстро за время Однако и в этом случае вероятность образования трещин мала, так как обычно и при межзеренном разрушении возможная деформация больше деформации за счет релаксации напряжений (рис. 61, г). Лишь при сварке сплавов повышенной жаропрочности, например дисперсионнотвердеющих никелевых сплавов, степень повреждаемости границ зерен околошовной зоны которых особенно велика, можно ожидать появления трещин при термической обработке и без концентраторов. Растрескивание можно ожидать также и при чрезмерной жесткости свариваемых узлов из аустенитных и теплоустойчивых сталей.  [c.100]

При использовании сталей, склонных к образованию трещин при термической обработке, следует избегать соединений высокой жесткости, например, типа показанных на рис. 56 вварных толстостенных штуцеров в сосудах. При повышенной жесткости сварных соединений, например, в сварных узлах паропроводов из Сг-Мо-У стали при толщине стенки свыше 20—30 мм или сварных штуцерах с непосредственной сваркой труб любой толщины друг с другом, нужно вводить операцию зачистки наружной поверхности швов до плавного сопряжения с основным металлом перед термической обработкой, чтобы исключить эффект концентрации напряжений. Целесообразно в ряде случаев рассматривать вопрос о возможности перехода к высокотемпературной термической обработке (нормализации для перлитных сталей и аустенитизации для аустенитных). Можно также вводить предварительную облицовку кромок, так как в этом случае жесткость сварного соединения заметно меньше и степень повреждения границ зерен око-лошовной зоны при воздействии ТДЦС также снижается. Для высоколегированных аустенитных сталей и сплавов на никелевой основе повышенной жаропрочности целесообразным бывает использование металла, выплавленного по совершенной металлургической технологии, применение мелкозернистого материала и ряд других методов, детально рассмотренных в главах, посвященных соответствующим типам материалов.  [c.103]

При сварке неупрочненного сплава марки Э435 каких-либо трудностей не встречается. Листовые конструкции из него обычно свариваются проволокой того же состава методом аргоно-дуговой сварки. Получение надежных сварных соединений из жаропрочных сплавов на никелевой основе встречает серьезные трудности. Они связаны прежде всего с возможностью появления трещин в околошовной зоне при сварке, термической обработке и высокотемпературной эксплуатации. Весьма сложной является также задача получения швов близкого состава высокой жаропрочности.  [c.239]


Смотреть страницы где упоминается термин Никелевые сварных соединений : [c.331]    [c.365]    [c.219]    [c.183]    [c.228]    [c.50]    [c.50]    [c.210]    [c.278]    [c.372]   
Морская коррозия (1983) -- [ c.307 , c.308 ]



ПОИСК



Коррозия сварных соединений никелевых сплавов

Сварные соединения жаропрочных сплавов на никелевой основе

Ч никелевый



© 2025 Mash-xxl.info Реклама на сайте