Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварные соединения жаропрочных сплавов на никелевой основе

СВАРНЫЕ СОЕДИНЕНИЯ ЖАРОПРОЧНЫХ СПЛАВОВ НА НИКЕЛЕВОЙ ОСНОВЕ  [c.239]

Рассмотрим теперь вопросы обеспечения жаропрочности сварных соединений высокожаропрочных сплавов на никелевой основе. [5, 13, 27, 35 и др.]. Характерной особенностью большинства из этих сплавов является высокое содержание титана и алюми-  [c.272]

Для интенсификации процесса образования соединения жаропрочного сплава АНВ-300 на основе алюминия, никеля и вольфрама с конструкционной сталью 40Х в качестве промежуточного слоя используют никелевую фольгу толщиной 10... 100 мкм. Сварку проводят при Т= 1200 °С, Р = 30 МПа и i = 20 мин. При непосредственном соединении сплава АНВ-300 со сталью 40Х, у которой = 310...340 МПа, предел прочности сварного шва составляет 30...35% этой величины. Применение промежуточного слоя позволяет повысить предел прочности сварного соединения до  [c.25]


В настоящее время большое значение приобретает сварка жаропрочных сталей и сплавов с конструкционными применительно к турбокомпрессорам дизельных двигателей. Проведены исследования соединений, выполненных сваркой трением, из следующих сочетаний материалов жаропрочная сталь ЭИ 572 со сталью 40Г для турбин, работающих при температуре до 700°, и жаропрочные сплавы иа никелевой основе ЭН 857 и АНВ-300 со сталью 40Х для турбин, работающих при температуре до 900 °С. Разработана технология сварки и термической обработки. Испытания на усталостную прочность и производственные испытания показали, что сварные соединения из указанных материалов имеют высокие прочностные показатели [11].  [c.190]

Приведены основные данные по жаропрочности сварных соединений конструкционных и теплоустойчивых сталей, аустенитных сталей, сплавов на никелевой основе, а также разнородных сталей, используемых в энергетике, нефтяном и химическом машиностроении.  [c.2]

При использовании сталей, склонных к образованию трещин при термической обработке, следует избегать соединений высокой жесткости, например, типа показанных на рис. 56 вварных толстостенных штуцеров в сосудах. При повышенной жесткости сварных соединений, например, в сварных узлах паропроводов из Сг-Мо-У стали при толщине стенки свыше 20—30 мм или сварных штуцерах с непосредственной сваркой труб любой толщины друг с другом, нужно вводить операцию зачистки наружной поверхности швов до плавного сопряжения с основным металлом перед термической обработкой, чтобы исключить эффект концентрации напряжений. Целесообразно в ряде случаев рассматривать вопрос о возможности перехода к высокотемпературной термической обработке (нормализации для перлитных сталей и аустенитизации для аустенитных). Можно также вводить предварительную облицовку кромок, так как в этом случае жесткость сварного соединения заметно меньше и степень повреждения границ зерен око-лошовной зоны при воздействии ТДЦС также снижается. Для высоколегированных аустенитных сталей и сплавов на никелевой основе повышенной жаропрочности целесообразным бывает использование металла, выплавленного по совершенной металлургической технологии, применение мелкозернистого материала и ряд других методов, детально рассмотренных в главах, посвященных соответствующим типам материалов.  [c.103]

При сварке неупрочненного сплава марки Э435 каких-либо трудностей не встречается. Листовые конструкции из него обычно свариваются проволокой того же состава методом аргоно-дуговой сварки. Получение надежных сварных соединений из жаропрочных сплавов на никелевой основе встречает серьезные трудности. Они связаны прежде всего с возможностью появления трещин в околошовной зоне при сварке, термической обработке и высокотемпературной эксплуатации. Весьма сложной является также задача получения швов близкого состава высокой жаропрочности.  [c.239]


По данным Дюваля и Овчарского, введение операции перестаривания заготовок позволило решить проблему околошовного растрескивания сварных соединений одного из наиболее жаропрочных сплавов на никелевой основе марки Юдимет-700 (0,06% С 15,4% Сг 5,0% Мо 18,8% Со 4,4% А1 3,4% Т1 0,03% В). Разработанный для этой цели оптимальный термический режим состоит из аустенитизации при 1170° С и двухступенчатой стабилизации при 1075° С с длительностью выдержки 16 ч с последующим охлаждением со скоростью 56° С/ч до 1024° С и выдержкой при этой температуре 16 ч. Далее заготовки медленно охлаждаются со скоростью 28° С/ч до 900° С, 56° С/ч до 565° С и затем на воздухе до комнатной температуры. Отмечается также, что после этой операции заметно улучшается и формообразование сплава. После аргоно-дуговой сварки заготовок с использованием в качестве присадки проволоки марки 718 изделие успешно проходит нагрев под термическую обработку со скоростью 1600° С/ч.  [c.249]

Допускаемые напряжения в сварных соединениях турбин устанавливают, как обычно, в процентном отношении от допускаемых напряжений для основного металла. Значения коэффициента прочности ф сварного соединения могут быть приняты теми же, что и для котельных элементов (см. гл. IX). Для сварных соединений с гарантированным проваром аустенитных сталей повышенной жаропрочности (ХН35ВТ, 08Х15Н24В4ТР) и сплавов на никелевой основе, не используемых в котлах и сосудах, принимают ф = 0,7.  [c.283]


Смотреть страницы где упоминается термин Сварные соединения жаропрочных сплавов на никелевой основе : [c.210]   
Смотреть главы в:

Жаропрочность сварных соединений  -> Сварные соединения жаропрочных сплавов на никелевой основе



ПОИСК



Жаропрочность

Жаропрочность сварных соединений

Жаропрочность соединений

Жаропрочные КЭП

Жаропрочные сплавы на никелевой

Жаропрочные сплавы на никелевой жаропрочность

Жаропрочные сплавы на основе Со

Никелевые сварных соединений

Никелевые сплавы

Никелевые сплавы-см. Сплавы никелевые

Основы жаропрочности

Сплавы жаропрочные

Сплавы жаропрочные на никелевой основе

Сплавы на основе

Ч никелевый



© 2025 Mash-xxl.info Реклама на сайте