Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плоская задача теории вязкоупругости

ПЛОСКАЯ ЗАДАЧА ТЕОРИИ ВЯЗКОУПРУГОСТИ  [c.360]

Решение плоской задачи теории упругости сводится к решению бигармонического уравнения относительно функции напряжений ф. Так как оно не содержит упругих постоянных, то на основании принципа Вольтерры можно утверждать, что это же уравнение справедливо и для плоской задачи теории вязкоупругости. Если граничные условия на границе односвязной области, занимаемой рассматриваемым телом, заданы в усилиях, то, как отмечалось в 4.3, решение плоской задачи теории упругости не зависит от упругих постоянных. Следовательно, распределение напряжений в каждый момент времени i в вязкоупругом теле совпадает с распределением напряжений в упругом теле.  [c.360]


Методы и алгоритмы решения плоских задач теории многократного наложения больших упругих и вязкоупругих деформаций  [c.45]

В данной главе рассмотрены приближенные аналитические методы решения класса плоских задач теории многократного наложения больших деформаций, а именно задач о последовательном образовании концентраторов напряжений в телах из упругого или вязкоупругого материала, когда образование каждого нового концентратора напряжений ведет к появлению в теле дополнительных конечных деформаций, которые накладываются на уже имеющиеся в теле конечные деформации.  [c.45]

В этой главе будет изложен подход, реализованный при разработке программного комплекса Наложение и позволяющий решать плоские задачи теории многократного наложения больших упругих и вязкоупругих деформаций с помощью специализированных модулей, входящих в состав этого программного комплекса. Особенностью этих модулей для аналитических вычислений, разработанных специально для данного класса задач, является то, что они выполняют аналитические действия только над функциями некоторого специального вида, зависящих от фиксированного числа заранее определенных переменных (координат или времени).  [c.133]

Плодотворное использование теории функций комплексного переменного для исследования плоской задачи теории упругости, а также в теории кручения и изгиба упругих стержней. В дальнейшем эти методы оказались полезными для теории пластинок и оболочек и осесимметричных, а также контактных задач теории упругости. Они нашли успешное применение для решения некоторых упруго-пластических задач, задач вязкоупругости и др.  [c.245]

Задача кусочно-непрерывного наращивания вязкоупругой стареющей арки приводится к последовательности задач, совпадающих по форме с плоской задачей теории упругости при наличии параметра времени. Решение каждой из полученных задач строится в форме тригонометрических рядов Фурье. Полная картина эволюции напряженно-деформированного состояния восстанавливается на основании соотношений (3).  [c.618]

Изложены следующие разделы курса теория напряженно-деформиро-ванного состояния, физические соотношения и постановки задач теории упругости, вариационные принципы, плоская задача, теория пластин, теории пластичности, линейная вязкоупругость. Включены примеры решения задач и тестовые задания.  [c.1]

Описывается характер распространения плоских гармонических волн в неограниченной среде. На примере неоднородного упругого стержня демонстрируется техника осреднения в динамических задачах. Далее эта техника применяется к пространственной динамической задаче теории упругости и линейной вязкоупругости. Описывается явление волнового фильтра. Обсуждаются некоторые вопросы разрушения композитов.  [c.290]


В этом параграфе рассмотрено решение задачи теории многократного наложения больших вязкоупругих деформаций — плоской задачи о последовательном образовании отверстий в предварительно нагруженном вязкоупругом теле для случая, когда форма каждого отверстия задана в момент его образования, а механические свойства материала описываются определяющими соотношениями (2.3.11). Будем считать, что начальная нагрузка  [c.101]

Плоские контактные задачи теории упругости при учете износа шероховатых поверхностей взаимодействующих тел, а также ряд смешанных задач для многослойных вязкоупругих оснований, когда относительная толщина и относительная жесткость верхнего слоя достаточно малы, сводятся к исследованию интегрального уравнения второго рода, содержащего оператор Фредгольма по координате и оператор Вольтерра по времени [3, 8, 9, 13-15, 19, 20, 22-25,28, 35], вида  [c.131]

Применения метода конечных элементов к задачам механики деформируемого твердого тела очень обширны. Сюда относятся задачи теории упругости, задачи теории пластин и оболочек, задачи расчета конструкций, составленных из пластин и оболочек, анализ упругопластического и вязкоупругого поведения материала, динамические задачи, расчет составных конструкций. Данная глава посвящена задачам теории упругости. Другие области механики деформируемого тела рассматриваться не будут. Мы обсудим здесь общие случаи одномерных, двумерных и трехмерных задач теории упругости, а также специальный случай задач с осевой симметрией. Кроме того, будет рассмотрена машинная реализация задачи о плоском напряженном состоянии.  [c.211]

В работах [17, 55, 66, 73] приводятся решения некоторых плоских и осесимметричных контактных задач о вдавливании без трения жесткого штампа в двухслойное стареющее вязкоупругое основание. Предполагается, что верхний слой тонкий относительно области контакта, неоднородно-стареющий реологические свойства нижнего слоя описываются уравнениями линейной теории ползучести стареющих материалов слои жестко сцеплены между собой область контакта не изменяется с течением времени. В зависимости от соотношений между модулями упругомгновенных деформаций слоев смешанные задачи сводятся к интегральным уравнениям первого или второго рода, содержащим операторы Фредгольма и Вольтерра. Используемый для их решения аналитический метод (см. 9, гл. 1) позволил построить разложения для основных характеристик контактного взаимодействия при произвольным образом меня-  [c.465]

Ниже приведены решения двух контактных задач — периодической контактной задачи об установившемся скольжении упругого индентора по вязкоупругому слою, сцепленному с упругим основанием (в плоской квазистатической постановке), и задачи о качении упругого цилиндра по упругому основанию, имеюш ему тонкий вязкоупругий поверхностный слой, — которые в развитие теории трения, разработанной А. Ю. Ишлинским, позволяют изучить роль несовершенной упругости поверхностного слоя, параметров микрогеометрии индентора и относительного проскальзывания поверхностей при качении и скольжении упругого индентора по упругому основанию.  [c.280]

Книга содержит обзор основных научных результатов, посвященных решению контактных статических, динамических и температурных задач для упругих, вязкоупругих и пластических тел. Изложены математические. методы решения плоских II пространственных задач при различных граничных условиях на площадках контакта. Приведены основные соотношения механики сплошных сред и теории упругости.  [c.2]

В первой части книги (главы 17), предназначенной в основном для студентов, рассмотрены следующие разделы курса теория напряженно-деформированного состояния, физические соот-ногления и постановки задач теории упругости, вариационные принципы, контактная задача теории упругости, плоская задача, теория пластин, теории пластичности, линейная вязкоупругость. При этом используется аппарат тензорного исчисления в прямоугольной декартовой системе коордипат. Теоретический материал сопровождается типовыми примерами регпения учебных задач. Удобные для контроля и самоконтроля знаний студентов тестовые задания приведены в приложении.  [c.7]


Динамические задачи вязкоупругости. В. Г. Гоголадзе (1938) рассмотрел некоторые волновые задачи теории вязкоупругости, имея в виду приложения к сейсмологии. Были изучены плоские волны расширения и сдвига, а также волны Рейли. Распространение принципа Вольтерра на свободные и вынужденные колебания было осуществлено в работах М. И. Розовского (1963), а также в ряде работ М. И. Розовского и И. И. Круша. Основной факт, положенный в основу теории,— это установленное М. И. Розовским свойство коммутативности  [c.152]

Основные работы, посвященные решению задач о наращивании методами теории упругости, приведены в [5241. На основе теории упругоползучего тела в работе [494] исследовано напряженно-деформированное состояние в однородных телах при их наращивании. В более общей постановке эта задача рассматривалась в [171]. Установлению определяющих соотношений и исследованию краевых задач вязкопластических течений "твердых тел посвящены работы [208, 209]. Уравнениям деформирования не вполне упругих и вязкопластических тел посвящены работы [217—220]. Задача термоползучести для неоднородно-стареющего тела исследована в [94, 95]. Плоская задача вязкоупругости для неоднородной среды, а также влияние старения материала на напряженно-деформированное состояние около отверстий исследовались в [429, 430, 474].  [c.27]

Теория Ферриса для гранулированных композитов была использована при решении плоских задач методом конечных элементов [28]. Однако теории, описывающей нелинейное поведение вязкоупругих волокнистых композитов, по-видимому, не  [c.189]

В этом случае задача сводится к плоской задаче линейной теории вязкоупругости для изотропной пластины с разрезом длиною 2L, по берегам которого приложены следующие самоурав-новешенные напряжения  [c.60]

I расчета конструкций, составленных из пластин и оболочек, ана-тз упругопластического и вязкоупругого поведения материала, шамические задачи, расчет составных конструкций. Данная гла-а посвящена задачам теории упругости. Другие области меха-нки деформируемого тела рассматриваться не будут. Мы обсу-ям здесь общие случаи одномерных, двумерных и трехмерны адач теории упругости, а также специальный случай задач с осе-ой симметрией. Кроме того, будет рассмотрена машинная реали-ацня задачи с плоском напряженном состоянии.  [c.211]

В разд. III, наибольшем по объему из всех разделов этой главы, изучаются задачи о плоской конечной деформации. Здесь поясняются некоторые подробности методов решения. Краевые задачи в перемещениях можно решать чисто кинематически, не пользуясь ни развернутыми гипотезами относительно связи напряжений с деформациями, ни даже уравнениями равновесия. В краевых задачах в напряжениях и в смешанных краевых задачах необходимо постулировать определенные зависимости, описывающие поведение материала под действием касательных напряжений. Для простоты мы ограничимся исследованием упругого сдвига или квазиупругого поведения пластических или вязкоупругих материалов. Основы теории разд. III заимствованы из работы Пиикина и Роджерса [26].  [c.290]

Р. Я. Ивановой [23] была рассмотрена задача о качении вязкоупругого цилиндра по основанию из того же материала. Задача решалась в плоской постановке при исходных физических интегральных зависимостях наследственного типа. Предполагалось, что движение катка начинается в момент времени —оо и продолжается с постоянной скоростью объемное последер вие отсутствует. Путем привлечения принципа Вольтерра задача решалась в рамках теории упругости с помощью метода Н. И. Мусхелишвили [38]. Полученные при этом два сингулярных уравнения типа Фредгольма содержат реологический оператор, который выражается через резольвенту ядра наследственности при сдвиге. После введения подвижной системы координат и замены дуги окружности катка дугой параболы одно из этих интегральных уравнений, которое соответствует мнимой части соотношения Мусхелишвили, удалось привести к форме, даюшей возможность решить его по методу Карлемана. Для конкретности резольвента ядра наследственности была взята в внде совокупности простых экспоненциальных ядер. Даже в этом случае получение численного результата было связано со значительными вычислительными трудностями. Решение выписано в квадратурах вычисление их осуществлялось приближенно применительно к материалам, обладающим достаточно большим временем релаксации.  [c.403]

Второе издание книги полностью переработано. В нем в отличие от первого издания более подробно изложены общие вопросы теорйи пластичности,, а также рассмотрены теория пластичности с анизо- тропным упрочнением, условие пластичности и теория пластичност для анизотропных материалов, напряженное состояние в шейКе образца при растяжении, новые методы построения действительной диаграммы деформирования, большие деформации и пластическая устойчивость цилиндрических и сферических оболочек, численные методы решения краевых задач плоской деформации и примеры йри-менения их, теория ползучести с анизотропным упрочнением, кратковременная ползучесть, использование критерия Треска—Сен-Венана, в решении задач установившейся ползучести, методы решения задач неустановившейся ползучести и примеры их применения, определение времени разрушения в условиях ползучести, вязкоупругость.  [c.3]



Смотреть страницы где упоминается термин Плоская задача теории вязкоупругости : [c.100]    [c.132]    [c.309]    [c.326]    [c.154]   
Смотреть главы в:

Основы теории упругости и пластичности  -> Плоская задача теории вязкоупругости



ПОИСК



Вязкоупругости задачи

Вязкоупругость

Методы и алгоритмы решения плоских задач теории многократного наложения больших упругих и вязкоупругих деформаций

Плоская задача

Теории Задача плоская



© 2025 Mash-xxl.info Реклама на сайте