Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление деформациям длительному циклическому деформированию

Записанное для наиболее общего случая уравнение (2.3.23), характеризующее сопротивление длительному циклическому деформированию, при наличии в цикле выдержки сохраняет свою структуру и для более простых типов нагружения. Так, если в А-м полуцикле нагружения нет выдержки и Фз (т) = 0, в уравнении удерживается только остаточная деформация, соответствующая активному нагружению.  [c.104]

Для проведения испытаний с целью изучения закономерностей неизотермической малоцикловой прочности, а также неизотермического деформирования используются установки растяжения — сжатия, снабженные системами программного регулирования. В этих установках основные решения вопросов управления режимами неизотермического нагружения, измерения процесса деформирования и нагрева, регистрации параметров соответствуют использованным в исследованиях сопротивления деформированию и разрушению в условиях длительного малоциклового нагружения, а также в описанной выше крутильной установке. Применены системы слежения с обратными связями по нагрузкам (деформациям) и температурам, отличающиеся непрерывным измерением и регистрацией основных характеристик процесса (напряжение, деформация, температура) в форме диаграмм циклического деформирования, развертки изменения параметров во времени, а также кривых ползучести и релаксации при однократном и циклическом нагружении.  [c.253]


Для оценки влияния истории циклического деформирования на сопротивление деформированию при длительном статическом нагружении проведена серия испытаний на ползучесть образцов, предварительно подверженных мало цикловому нагружению (жесткий режим, jV= 500 циклов при размахе деформации е = 1,0%) и температурах 610 и 670 °С (штриховая линия на рис. 4.54, а). Образцы, прошедшие предварительную тренировку, испытывали на ползучесть при тех же температурах.  [c.223]

Предложения [14, 15] но методу расчета применительно к высокотемпературным атомным энергетическим установкам являются развитием расчета при отсутствии ползучести, и между ними существует определенная преемственность. В расчете размахов местных неупругих деформаций используется соотношение типа Нейбера, кривая циклического деформирования формируется на основе характеристик сопротивления деформированию, зависящих от изменения температур и длительности полуцикла. При формировании циклов рассматривается процесс изменения приведенных местных деформаций от эксплуатационных нагрузок (теория наибольших касательных напряжений). Уравнение кривой усталости включает упругую и пластическую предельные деформации, зависящие от температуры и длительности нагружения. Эти деформации определяются через базовые характеристики механических свойств при кратковременном и длительном нагружении.  [c.38]

В связи с рассмотренными особенностями деформирования и разрушения резьбовых соединений, работающих в широком диапазоне температур, важное значение может иметь температурный фактор, способствующий возникновению дополнительных деформаций ползучести, снижению усилий предварительного затяга п накоплению длительных статических и циклических повреждений. Оценка сопротивления малоцикловому разрушению резьбовых соединений при высоких температурах может быть осуществлена по критериям длительной циклической прочности (см. гл. 2, 4 и 11). Понижение температур эксплуатации приводит к возможности возникновения хрупких разрушений резьбовых соединений на ранних стадиях развития трещин малоциклового нагружения. Это требует изучения трещиностойкости конструкционных материалов (предназначенных для изготовления резьбовых соединений) с применением соответствующих критериев линейной и нелинейной механики разрушения [19, 12].  [c.211]


Записанное для наиболее общего случая длительного малоциклового нагружения уравнение (4.8), характеризующее сопротивление деформированию при наличии в цикле выдержек, сохраняет свою структуру и для более простых типов нагружения. Та.к, если в k-u полуцикле нагружения в = 0, в уравнении остается только необратимая деформация, соответствующая активному нагружению. Для циклического деформирования ири нормальной и повышенных температурах, когда временными процессами можно пренебречь и F2 t) = , уравнение (4.8) приводится к виду обобщенной диаграммы циклического деформирования 15]  [c.183]

Для инженерных оценок долговечности при длительном малоцикловом нагружении можно использовать численные методы, в том числе известные соотношения между коэффициентами концент-рац И1 напряжений и деформаций в упругой и упругопластической областях деформирования. При этом учитывают изменения характеристик сопротивления длительному малоцикловому деформированию в процессе циклического нагружения, сопровождающегося ползучестью.  [c.209]

В испытаниях на термическую усталость с варьируемой жесткостью нагружения [4,5, 10] это связано прежде всего с режимом неизотермического малоциклового нагружения (жесткость нагружения, уровень максимальной температуры цикла, скорость нагрева и охлаждения, длительность выдержки) и определяется различным сопротивлением статическому и циклическому деформированию частей образца, нагретых в разной степени из-за продольного градиента температур, и протеканием реологических процессов на этапе выдержки при высокой температуре [4, 10]. На рис. 4, б показано, что зффект одностороннего накопления деформаций существенно проявляется в характерной для малоцикловой усталости области чисел циклов (до 10 ) и в определенных условиях (большая жесткость нагруяшния — до 240 Т/см и длительная выдержка — до 60 мин), возможно накопление перед разрушением деформаций, близких к величинам статического однократного разрыва (кривые 7,5, 5) при соответствующем времени деформирования в условиях неизотермического нагружения. При этом реализуется смешанный или квазистатический (длительный статический) характер малоциклового разрушения.  [c.40]

Задача об определении сопротивления малоцикловому разрушению при температурах более высоких, чем указанные, когда циклические пластические деформации сочетаются с деформациями ползучести, существенно усложняется. В настояш,ее время осуществляются интенсивные экспериментальные исследования уравнений состояния и критериев разрушения при длительном цикличес-ком нагружении в условиях однородных напрян енных состояний при жестком и мягком нагружении. Результаты этих исследований освещены в трудах конференций в Киото (1971), Каунасе (1971), Будапеште (1971), Филадельфии (1973) [1, 3, 6, 7], а также конференций в Лондоне (1963, 1967, 1971), Сан-Франциско (1969), Брайтоне Х1969), Дельфте (1970) и др. Однако несмотря на большой объем экспериментальных работ, пока не удалось разработать общепринятые предложения по кривым длительного циклического деформирования и разрушения это не позволяет перейти к расчетной оценке напряженных и деформированных состояний в элементах конструкций для определения их прочности и долговечности на стадии образования трещин и тем более на стадии их развития.  [c.100]

Основными направлениями экспериментальных и теоретических разработок в области прочности материалов и конструкций, выполненных в исследовательских центрах и заводских лабораториях, являются линейная и нелинейная механика разрушения де-формациогн1ые и энергетические критерии разрушения модели деформируемых сред с учетом сосредоточенного и рассредоточенного повреждения процессы длительного циклического деформирования и разрушения сопротивление деформациям и разрушению - при программном изотермическом и неизотермическом нагружениях микромеханика процессов статического и циклического разрушений.  [c.18]


В соответствии с этим представляется целесообразным располагать данными по ползучести, длительной прочности и разрушающим деформациям при соответствующих уровнях постоянных напряжений в широком диапазоне времени до разрушения, в том числе и для кратковременной ползучести. С другой стороны, было бы важно получить данные о сопротивлении циклическому деформированию и разрушению без учета в.пияния времени для того, чтобы оценить деформацию ползучести и циклическую пластическую деформацию, а также соответствующие им повреждения. Такие данные получить непосредственно из опыта представляет известные трудности, поскольку время цикла и общее время до разрушения в этом случае должны быть достаточно малы, чтобы не происходило развития деформаций ползучести и падения во времени пластичности и прочности. Следует заметить, что приемлемые в этом смысле частота и время до разрушения существенно зависят от температуры.  [c.211]

Необходимость исследования закономерностей сопротивления циклического деформирования материалов в условиях малоциклового, длительного циклического и неизотермического нагружений определяется, как было рассмотрено выше (см. гл. 1), прежде всего потребностями разработки экспериментально обоснованных уравнений состояния, позволяющих определять поцикловое напряженно-деформированное СОСТОЯ , ие и анализировать кинетику деформаций в наиболее напряженных зонах (амплитуды местных упругопластических деформаций и величины односторонне накопленных пластических деформаций). Это в свою очередь позволяет рассмотреть процесс накопления циклических повреждений с целью расчетной оценки прочности и долговечности элементов конструкций.  [c.25]

Вместе с тем в работе Суркова и Садовского [167] показано, что при ВТМО такого же никелевого сплава (марка ХН77ТЮР) в случае малых скоростей деформирования (осадкой на 20— 30% ) возникает термически стабильная полигональная структура и сопротивление ползучести сплава больше при достаточно высокой температуре по сравнению с обычной обработкой. В ра-бота. [168 6] была показана возможность получения стабильной полигональной структуры в результате относительно небольшой деформации (1 —10%) и последующего нагрева ниже температуры рекристаллизации (механико-термическая обработка). При этом возрастает сопротивление ползучести, длительная и циклическая прочность. Создание полигональной структуры в молибдене приводит к значительному повышению температуры рекристаллизации (на 200—300° С) и к улучшению механических свойств [169].  [c.199]

Развитием указанных подходов, применительно к области повышенных и высоких температур, явилось обоснование существования изоциклических и изохронных диаграмм длительного малоциклового деформирования [15]. Исследования сопротивления материалов высоко-температурному малоцикловому деформированию позволили сформулировать положение о том, что в каждом полу-цикле на участке активного нагружения можно использовать зависимости, характерные для описания статической ползучести в соответствии с теорией старения Работнова. При этом основная особенность диаграммы деформирования с проявлением временных эффектов состоит в том, что циклические изохронные кривые (по параметру времени) образуют при заданном режиме нагружения единую зависимость между напряжениями и деформациями, отсчитываемыми от момента перехода через нуль значений напряжений.  [c.177]

В монографии систематически изложены вопросы сопротивления деформированию и разрушению при малоцикловом высокотемпературном нагружении. Разработаны способы интерпретации связи циклических напряжений и деформаций на основе изоциклических и изохронных диаграмм циклической ползучести и свойств подобия. Для определения предельных состояний по моменту образования разрушения используется деформационно-кинетический критерий длительной малоцикловой прочности. Закономерности деформирования и разрушения использованы для разработки основ методов оценки малоцикловой прочности элементов конструкций при нормальной и высоких температурах.  [c.2]

Упруго-пластическая деформация поверхностного слоя в процессе механической обработки вызывает изменение структурночувствительных физико-механических и химических свойств в металле поверхностного слоя по сравнению с исходным его состоянием. В деформированном поверхностном слое возрастают все характеристики сопротивления деформированию пределы упругости, текучести, прочности, усталости. Изменяются характеристики прочности при длительном статическом и циклическом нагружении в условиях высоких температур. Снижаются характеристики пластичности относительное удлинение и сужение, повышается хрупкость (уменьшается ударная вязкость), твердость, внутреннее трение, уменьшается плотность. Металл в результате пластической деформации упрочняется.  [c.50]

Однако с повышением температуры испытания в предварительно деформированном металле по сравнению с ненаклеианным возрастает интенсивность диффузионных процессов, способствующих уменьшению напряженности и искажений кристаллической решетки (в результате развития явлений возврата и рекристаллизации). Интенсивность диффузионных процессов в наклепанном металле возрастает с увеличением накопленной внутренней энергии. Движение дислокаций, освободившихся от препятствий, увеличивает число элементарных актов сдвига и насыщенность металла вакансиями. Металл разупрочняется, сопротивление длительному статическому и циклическому разрушению уменьшается. Начало процесса разупрочнения предварительно наклепанного металла зависит прежде всего от степени деформации, температуры и продолжительности испытания.  [c.200]


Характер зависимости пластических циклических и односторонне накопленных деформаций от числа циклов нагружения и времени в общем случае определяется историей нагружения. Учитывая многообразие возможных сочетаний режимов нагружения по скоростям, температурам и длительностям вьщержек, для решения конкретных задач об определении НДС целесообразно использовать экспериментальные диаграммы деформирования, полученные для конкретных условий рассматриваемой задачи. Указанная необходимость получения прямых зкспериментальных данных и невозможность прогнозиров ия максимальных повреждающих эффектов обусловливают требование проведения прямых экспериментов по определению сопротивления деформированию конструкционного материала при наиболее опасных режимах термомеханического нагружения.  [c.22]

Однако при деформации ползучести, реализующейся на этапе выдержки в цилиндрическом (типа П) и сферическом корпусах (до 0,1 — 0,2 %), изохронные кривые деформирования различаются незначительно. Выявленная закономерность позволяет в расчетах деформаций ползучести в цикле термоциклического нагружения не учитывать для применяемого жаропрочного сплава ХН60ВТ влияние эффекта циклического упрочнения на сопротивление деформированию при длительном статическом нагружении.  [c.223]

С учетом бесчисленного множества возможных комбинаций параметров а, к, т, г экспериментальное обоснование функциональных зависи.мостей (1.3) и (1.4) оказывается связанным со значительными принципиальными и методическими трудностями. В соответствии с этим возникает задача о выборе основных характеристик механического поведения материалов при циклическом нагружении в неупругой области и базовых экспериментов с учетом отсутствия (нормальные или повышенные температуры) и на.личия (высокие температуры) температурно-временных эффектов (рис. 1.2). Исходными для выбора параметров уравнений состояния являются результаты кратковременных и длительных статических испытаний. Данные этих испытаний позволяют установить пределы текучести От, характеристики упрочнения (показатель упрочнения при степенной и модуль упрочнения Gт при линейной аппроксимации / (а, е)) и пластичность (относительное сужение ф - или логарифмическая деформация е/,-). По данным д.лительных статических испытаний определяется скорость ползучести <1е1с1х, длительная прочность Сты и пластичность д.ля данной температуры Ь и времени т. Параметры уравнений состояния при малоцикловом деформировании наиболее целесообразно определять при нагружении с заданными амплитудами напряжений — мягкое нагружение. В качестве основных характеристик сопротивления деформированию в заданном А-полуцикле при этом используются ширина петли и односторонне накопленная пластическая деформация е р При этом ширина петли определяется как произведение ширины петли в первом полуцикле к = 1) на безразмерную функцию чисел циклов Р к)  [c.10]

В отличие от методов сопротивления материалов в третьем разделе рассмотрены новые, более эффективные подходы к оценке прочности и разрушения. Разрушение материала здесь рассматривается как происходящий во времени процесс при кратковременном, длительном, динамическом и циклическом нагружениях. Изложены теория напряженно-деформированного состояния и критерии разрушения тел с грещи-нами, расчеты на прочность по номинальным и местным напряжениям и деформациям, методы расчега на трещиностойкость.  [c.16]

Сопротивление хрупкому разрушению стали 16Г2АФ зависит от длительности предшествующего циклического нагружения (рис. 4.17). После нагружения при = 450 МПа до N =1% критическая температура хрупкости Tjg понижается на 25% по сравнению с исходным состоянием, что обусловлено генерированием подвижных дислокаций. Атомы углерода и азота не успели закрепиться и тем самым проявить эффект деформационного старения. Дальнейшее циклическое нагружение приводит к существенному повышению Уже при N =10% она на 10°С выше, чем у стали в исходном состоянии. В интервале числа циклов нагружения N =10-ь 70% наблюдается некоторое повышение для обеих амплитуд нагружения. В целом циклическая деформация стали в этом интервале вызывает охрупчивание почти в такой же степени, как естественное и искуственное старение при 250°С пластически деформированной на 10% стали (рис. 4.17).  [c.154]


Смотреть страницы где упоминается термин Сопротивление деформациям длительному циклическому деформированию : [c.34]    [c.260]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.199 ]



ПОИСК



Деформация циклическая

Деформирование и деформация

Деформирование циклическое

Сопротивление деформациям

Сопротивление деформированию

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте