Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление деформациям длительному статическому деформированию

При высоких температурах напряженное и деформированное состояние в зонах концентрации напряжений при длительном статическом нагружении оказывается зависящим от уровня концентрации, номинальных напряжений, сопротивления материала неупругим деформациям и времени нагружения. В связи со сложностью процессов местного деформирования в зонах концентрации пока не получены достаточные для практического использования решения соответствующих краевых задач. Ряд результатов в этом направлении получен в работах [46—48] увеличение скоростей ползучести в зонах концентрации сопровождается уменьшением коэффициентов концентрации напряжений. Более широко для оценки местных напряжений и деформаций при ползучести в зонах концентрации использовались приближенные методы, основанные на кинематических гипотезах или уравнении Нейбера [49—54]. Большие возможности для решения задач о ползучести в зонах концентрации связаны с применением метода конечных элементов и электронных вычислительных машин [55, 56].  [c.111]


Для оценки влияния истории циклического деформирования на сопротивление деформированию при длительном статическом нагружении проведена серия испытаний на ползучесть образцов, предварительно подверженных мало цикловому нагружению (жесткий режим, jV= 500 циклов при размахе деформации е = 1,0%) и температурах 610 и 670 °С (штриховая линия на рис. 4.54, а). Образцы, прошедшие предварительную тренировку, испытывали на ползучесть при тех же температурах.  [c.223]

В связи с рассмотренными особенностями деформирования и разрушения резьбовых соединений, работающих в широком диапазоне температур, важное значение может иметь температурный фактор, способствующий возникновению дополнительных деформаций ползучести, снижению усилий предварительного затяга п накоплению длительных статических и циклических повреждений. Оценка сопротивления малоцикловому разрушению резьбовых соединений при высоких температурах может быть осуществлена по критериям длительной циклической прочности (см. гл. 2, 4 и 11). Понижение температур эксплуатации приводит к возможности возникновения хрупких разрушений резьбовых соединений на ранних стадиях развития трещин малоциклового нагружения. Это требует изучения трещиностойкости конструкционных материалов (предназначенных для изготовления резьбовых соединений) с применением соответствующих критериев линейной и нелинейной механики разрушения [19, 12].  [c.211]

Механические свойства определяются характеристиками сопротивления статическому разрушению (пределы прочности при растяжении, сжатии, срезе), сопротивления пластическим деформациям (пределы текучести), сопротивления усталостному разрушению (пределы выносливости), сопротивления длительному статическому разрушению, сопротивления мгновенному разрушению (пределы текучести и прочности при скоростном деформировании), а также ударной вязкостью и твёрдостью.  [c.332]

Использование теорий прочности при расчете реальных конструкций усложняется еще и тем, что большинство деталей машин работает в условиях неравномерного распределения напряжений по объему. При рассмотрении теорий статической (кратковременной и длительной) и усталостной прочности мы не касались таких вопросов, как роль градиента напряжений и масштабного эффекта. Опыт показывает, что при неоднородном напряженном состоянии (например, в зоне резких изменений сечений) деформирование иногда протекает без образования остаточных деформаций до напряжений, значительно превышающих предел текучести при однородном напряженном состоянии, т. е. градиент напряжений как бы способствует повышению сопротивления материала.  [c.198]


В испытаниях на термическую усталость с варьируемой жесткостью нагружения [4,5, 10] это связано прежде всего с режимом неизотермического малоциклового нагружения (жесткость нагружения, уровень максимальной температуры цикла, скорость нагрева и охлаждения, длительность выдержки) и определяется различным сопротивлением статическому и циклическому деформированию частей образца, нагретых в разной степени из-за продольного градиента температур, и протеканием реологических процессов на этапе выдержки при высокой температуре [4, 10]. На рис. 4, б показано, что зффект одностороннего накопления деформаций существенно проявляется в характерной для малоцикловой усталости области чисел циклов (до 10 ) и в определенных условиях (большая жесткость нагруяшния — до 240 Т/см и длительная выдержка — до 60 мин), возможно накопление перед разрушением деформаций, близких к величинам статического однократного разрыва (кривые 7,5, 5) при соответствующем времени деформирования в условиях неизотермического нагружения. При этом реализуется смешанный или квазистатический (длительный статический) характер малоциклового разрушения.  [c.40]

Упруго-пластическая деформация поверхностного слоя в процессе механической обработки вызывает изменение структурночувствительных физико-механических и химических свойств в металле поверхностного слоя по сравнению с исходным его состоянием. В деформированном поверхностном слое возрастают все характеристики сопротивления деформированию пределы упругости, текучести, прочности, усталости. Изменяются характеристики прочности при длительном статическом и циклическом нагружении в условиях высоких температур. Снижаются характеристики пластичности относительное удлинение и сужение, повышается хрупкость (уменьшается ударная вязкость), твердость, внутреннее трение, уменьшается плотность. Металл в результате пластической деформации упрочняется.  [c.50]

Однако с повышением температуры испытания в предварительно деформированном металле по сравнению с ненаклеианным возрастает интенсивность диффузионных процессов, способствующих уменьшению напряженности и искажений кристаллической решетки (в результате развития явлений возврата и рекристаллизации). Интенсивность диффузионных процессов в наклепанном металле возрастает с увеличением накопленной внутренней энергии. Движение дислокаций, освободившихся от препятствий, увеличивает число элементарных актов сдвига и насыщенность металла вакансиями. Металл разупрочняется, сопротивление длительному статическому и циклическому разрушению уменьшается. Начало процесса разупрочнения предварительно наклепанного металла зависит прежде всего от степени деформации, температуры и продолжительности испытания.  [c.200]

Однако при деформации ползучести, реализующейся на этапе выдержки в цилиндрическом (типа П) и сферическом корпусах (до 0,1 — 0,2 %), изохронные кривые деформирования различаются незначительно. Выявленная закономерность позволяет в расчетах деформаций ползучести в цикле термоциклического нагружения не учитывать для применяемого жаропрочного сплава ХН60ВТ влияние эффекта циклического упрочнения на сопротивление деформированию при длительном статическом нагружении.  [c.223]

Основными направлениями экспериментальных и теоретических разработок в области прочности материалов и конструкций, выполненных в исследовательских центрах и заводских лабораториях, являются линейная и нелинейная механика разрушения де-формациогн1ые и энергетические критерии разрушения модели деформируемых сред с учетом сосредоточенного и рассредоточенного повреждения процессы длительного циклического деформирования и разрушения сопротивление деформациям и разрушению - при программном изотермическом и неизотермическом нагружениях микромеханика процессов статического и циклического разрушений.  [c.18]

С учетом бесчисленного множества возможных комбинаций параметров а, к, т, г экспериментальное обоснование функциональных зависи.мостей (1.3) и (1.4) оказывается связанным со значительными принципиальными и методическими трудностями. В соответствии с этим возникает задача о выборе основных характеристик механического поведения материалов при циклическом нагружении в неупругой области и базовых экспериментов с учетом отсутствия (нормальные или повышенные температуры) и на.личия (высокие температуры) температурно-временных эффектов (рис. 1.2). Исходными для выбора параметров уравнений состояния являются результаты кратковременных и длительных статических испытаний. Данные этих испытаний позволяют установить пределы текучести От, характеристики упрочнения (показатель упрочнения при степенной и модуль упрочнения Gт при линейной аппроксимации / (а, е)) и пластичность (относительное сужение ф - или логарифмическая деформация е/,-). По данным д.лительных статических испытаний определяется скорость ползучести <1е1с1х, длительная прочность Сты и пластичность д.ля данной температуры Ь и времени т. Параметры уравнений состояния при малоцикловом деформировании наиболее целесообразно определять при нагружении с заданными амплитудами напряжений — мягкое нагружение. В качестве основных характеристик сопротивления деформированию в заданном А-полуцикле при этом используются ширина петли и односторонне накопленная пластическая деформация е р При этом ширина петли определяется как произведение ширины петли в первом полуцикле к = 1) на безразмерную функцию чисел циклов Р к)  [c.10]


Развитием указанных подходов, применительно к области повышенных и высоких температур, явилось обоснование существования изоциклических и изохронных диаграмм длительного малоциклового деформирования [15]. Исследования сопротивления материалов высоко-температурному малоцикловому деформированию позволили сформулировать положение о том, что в каждом полу-цикле на участке активного нагружения можно использовать зависимости, характерные для описания статической ползучести в соответствии с теорией старения Работнова. При этом основная особенность диаграммы деформирования с проявлением временных эффектов состоит в том, что циклические изохронные кривые (по параметру времени) образуют при заданном режиме нагружения единую зависимость между напряжениями и деформациями, отсчитываемыми от момента перехода через нуль значений напряжений.  [c.177]

Кривые длительной прочности никелевого сплава ХН70ВМТЮ при 700, 800 и 900° С, полученные на образцах, подвергнутых пластическому деформированию до разных значений остаточной деформации, представлены на рис. 3.3. С увеличением степени предварительного наклепа сопротивление длительному статическому разрушению при выбранных температурах испытания уменьшается. Исследования изменения структуры сплава, подвергнутого испытаниям на ползучесть, показывают, что в образцах с предварительным наклепом под дейст-  [c.36]

Таким образом, несмотря на то, что влияние п редварительной деформации индивидуально и зависит от сплава и температурно-временнйх условий, для материалов реальных конструкций, работающих при малых упругопластических деформациях (до 0,2—0,5%), возможно принимать кривые ползучести и характеристики длительной прочности, не зависящими от предварительного пластического деформирования, а. мгновенные диаграммы растяжения и характеристики кратковременной прочности, не зависящими от предварительно накопленной деформации ползучести. Большие степени холодных пластических деформаций, возникающие на поврежденных слоях при механической обработке, оказывают значительное влияние на характеристики прочности и пластичности при длительном статическом разрушении. Снижение сопротивления длительному статическому разрушению и способности к пластическому деформированию материала, наклепанного при механической обработке (фрезерование, шлифование абразивом), являются в ряде случаев причиной образования статических трещин в поверхностных слоях деталей, работающих при высоких температурах.  [c.36]


Смотреть страницы где упоминается термин Сопротивление деформациям длительному статическому деформированию : [c.80]    [c.260]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.187 ]



ПОИСК



Деформирование и деформация

Деформирование статическое

Сопротивление деформациям

Сопротивление деформированию



© 2025 Mash-xxl.info Реклама на сайте